Public Assessment Report

Decentralised Procedure

Heparin Panpharma 5,000 I.U./ml, solution for injection

(heparin sodium)

PRODUCT LICENCE NUMBER:
PL 44124/0016
EUROPEAN PROCEDURE NUMBER:
UK/H/6850/001/DC

Panpharma.
LAY SUMMARY

Heparin Panpharma 5,000 I.U./ml, solution for injection
(heparin sodium)

This is a summary of the Public Assessment Report (PAR) for Heparin Panpharma 5,000 I.U./ml, solution for injection. It explains how Heparin Panpharma 5,000 I.U./ml, solution for injection was assessed and its authorisation recommended, as well as its conditions of use. It is not intended to provide practical advice on how to use Heparin Panpharma 5,000 I.U./ml, solution for injection.

This product will be referred to as ‘Heparin Panpharma’ in this lay summary for ease of reading.

For practical information about using Heparin Panpharma, patients should read the package leaflet or contact their doctor or pharmacist.

What is Heparin Panpharma and what is it used for?
This application is for a medicine that has a well-established use. This means that the use of the active substance in this medicine has been well-established in the European Union for at least 10 years, with recognised efficacy and an acceptable level of safety.

Heparin Panpharma is used to treat:
- Blood clots in leg veins (deep vein thrombosis)
- Blood clots in the lung (pulmonary embolism)

It is also used during heart and lung operations and during kidney dialysis.

How does Heparin Panpharma work?
Heparin Panpharma belongs to a group of medicines called anticoagulants. Heparin prevents blood clotting.

How is Heparin Panpharma used?
The pharmaceutical form of this medicine is a solution for injection and the route of administration is by injection into a vein either all at once or over a longer period of time (usually via a drip). This medicine can also be given by injection beneath the skin (subcutaneous).

The patient may need to have blood tests if they are receiving higher doses of heparin to check on the effects of your heparin treatment.

The patient may require a lower dose if they have kidney or liver disease.

To treat blood clots in leg veins (deep vein thrombosis) and blood clots in the lung (pulmonary embolism).

Adults
The usual dose in adults is 5,000 units injected into a vein. This is followed by:
- 1,000-2,000 units/hour injected slowly into a vein (12,000 to 24,000 units per 24 h) or
- 5,000-10,000 units 4 hourly injected all at once into a vein (30,000 to 60,000 per 24 h) or
- 10,000-20,000 units 12 hourly injected under the skin.
Elderly
Lower doses may be used in the elderly.

Paediatric population
Paediatric population will be given 50 units/kg bodyweight injected into a vein followed by:
- 15-25 units/kg bodyweight/hour injected slowly into a vein or
- 250 units/kg bodyweight 12 hourly injected under the skin or
- 100 units/kg bodyweight 4 hourly injected all at once into a vein without exceeding adult dose.

Renal impairment, hepatic impairment and thrombocytopenia not induced by heparin:
A lower dose may be required.

During Heart and Lung Surgery (Adults)
Initially the patient will be given 300 units/kg body weight. This will be changed according to the results of the patient’s blood tests.

Elderly
Lower doses may be used in the elderly.

Paediatric population:
Standard treatment dosages should be given initially. Subsequent dosages and/or dosage intervals should be individually adjusted according to changes in thrombin clotting time, whole blood clotting time and/or activated partial thromboplastin time.

During kidney dialysis (Adults)
Initially the patient will be given 1,000-5,000 units. This will be changed according to the results of the patient’s blood tests.

Elderly
Lower doses may be used in the elderly.

Paediatric population:
Standard treatment dosages should be given initially. Subsequent dosages and/or dosage intervals should be individually adjusted according to changes in thrombin clotting time, whole blood clotting time and/or activated partial thromboplastin time.

For further information on how Heparin Panpharma is used, refer to the package leaflet and Summary of Product Characteristics available on the Medicines and Healthcare products Regulatory Agency (MHRA) website.

This medicine can only be obtained with a prescription. The patient should always take this medicine exactly as their doctor has told them. The patient should check with their doctor or pharmacist if they are not sure.

What benefits of Heparin Panpharma have been shown in studies?

Either
As the active substance heparin has been in clinical use for over 10 years, data were provided in the form of literature references to show that Heparin Panpharma is a safe and efficacious treatment for blood clots in leg veins (deep vein thrombosis), blood clots in the lung...
(pulmonary embolism) and for use during heart and lung operations and during kidney dialysis.

What are the possible side effects of Heparin Panpharma?

Either
The most common side effects with Heparin Panpharma (which may affect up to 1 in 10 people) are:

- bleedings (haemorrhage)
- contusion
- high level of blood fats after stopping heparin (rebound hyperlipidaemia)
- abnormal results for blood tests that report on how the liver is

For the full list of all side effects reported with this medicine, see Section 4 of the package leaflet or the Summary of Product Characteristics (SmPC) available on the MHRA website.

Why was Heparin Panpharma approved?

It was concluded that the data provided from literature references had shown that Heparin Panpharma is effective in the treatment of the afore mentioned indications. Furthermore, use of the active substance heparin in the European Union has shown that it has a recognised efficacy and an acceptable level of safety. Therefore, the MHRA decided that the benefits are greater than the risks and recommended that it can be approved for use.

What measures are being taken to ensure the safe and effective use of Heparin Panpharma?

A Risk Management Plan (RMP) has been developed to ensure that Heparin Panpharma is used as safely as possible. Based on this plan, safety information has been included in the SmPC and the package leaflet, including the appropriate precautions to be followed by healthcare professionals and patients.

Known side effects are continuously monitored. Furthermore, new safety signals reported by patients/healthcare professionals will be monitored and reviewed continuously.

Other information about Heparin Panpharma

A Marketing Authorisation for Heparin Panpharma was granted in the UK on 15 March 2019.

The full PAR for Heparin Panpharma follows this summary.

This summary was last updated in April 2019.
TABLE OF CONTENTS

Contents

I INTRODUCTION ... 6
II QUALITY ASPECTS .. 7
III NON-ClinICAL ASPECTS ... 10
IV CLINICAL ASPECTS ... 11
V USER CONSULTATION .. 13
VI Overall conclusion, benefit/risk assessment and recommendation 13

Table of content of the PAR update .. 17
I INTRODUCTION

Based on the review of the data on quality, safety and efficacy, the Medicines and Healthcare products Regulatory Agency (MHRA) considered that the application for Heparin Panpharma (PL 44124/0016; UK/H/6850/001/DC) could be approved.

The product is indicated for the treatment of deep vein thrombosis and pulmonary embolism and in extracorporeal circulation and haemodialysis.

The Reference Member State (RMS) for this procedure was the UK and the Concerned Member States (CMSs) were Bulgaria, Denmark, Norway and Portugal.

Heparin prevents the coagulation of blood in-vivo and in-vitro. It potentiates the inhibition of several activated coagulation factors, including thrombin and factor X.

Heparin is a mucopolysaccharide-polysulfuric acid ester and consists of glucosamine-N-sulfuric acid and sulfuric acid esters of glucuronic acid, which are glycosidically linked to each other.

Due to its strong negative charge, heparin forms complexes with certain proteins and thus modify their biological properties. Heparin acts as a catalyst to accelerate the rate at which antithrombin III (heparin cofactor) neutralises thrombin and activated coagulation factor X (Xa). Antithrombin III generally neutralises the coagulation factors by slowly and irreversibly complexing stoichiometrically with them; however, in the presence of heparin, it neutralises these factors almost instantaneously.

Heparin increases activity of antithrombin about 700-fold due to its complex formation with heparin.

This application was submitted under Article 10a of Directive 2001/83/EC, as amended, as a well-established use application. No new non-clinical or clinical studies were submitted, as the data submitted for this application is in the form of literature references.

The MHRA has been assured that acceptable standards of Good Manufacturing Practice (GMP) are in place for this/these product(s) at all sites responsible for the manufacture, assembly and batch release of this/these product(s).

A Risk Management Plan (RMP) and a summary of the pharmacovigilance system have been provided with this/these application(s) and are satisfactory.

The RMS and CMSs considered that the application could be approved at the end of procedure (Day 210) on 07 March 2019. After a subsequent national phase, a licence was granted in the UK on 15 March 2019.
II QUALITY ASPECTS

II.1 Introduction
Each vial with 5 ml solution for injection contains 25,000 I.U. of heparin sodium (from porcine intestinal mucosa). Each 1 ml of solution for injection contains 5,000 I.U. of sodium heparin.

In addition to heparin sodium this product also contains the excipients benzyl alcohol, sodium chloride, sodium hydroxide (for pH adjustment), hydrochloric acid (for pH adjustment) and water for injections.

The finished product is packaged in glass vials of type I or type II with a capacity of 5 ml, closed by a chlorobutyl rubber stoppers with aluminium flip-off cap. The medicinal product is available in pack sizes of 5, 10 or 25 vials of 5 ml of solution for injection.

Satisfactory specifications and Certificates of Analysis have been provided for all packaging components. All primary packaging complies with the current European regulations concerning materials in contact with food.

II.2 ACTIVE SUBSTANCE
INN: Heparin sodium

General information
Heparin is a natural copolymer of animal origin consisting of a repetitive fundamental disaccharide (uronic acid-glucosamine) with different degree of sulfation. The sulfated polysaccharide is present in animal organs, such as intestine and lung, linked to polypeptide components according to the sequence HEPARIN-GAL-GAL-XYL-SER in the form of polyglycan having a molecular mass between 160,000 and 200,000 Daltons (were GAL = galactose, XYL = xylose, SER = serine).

Heparin is obtained from the intestinal mucosae of pigs by extraction in presence of a proteolytic enzyme. A proteolytic enzymatic hydrolysis gives the formation of products with molecular mass in a range 10,000 – 20,000 Daltons. On complete hydrolysis, it liberates d-glucosamine, d-glucuronic acid, l-iduronic acid, acetic acid and sulfuric acid. The drug substance is described in the Ph. Eur. Heparin Sodium <0333>.

Chemical Name: Heparin sodium

Chemical Structure:
Heparin sodium is the salt of a sulfated glucosaminoglycan present in mammalian tissues. It has the characteristic property of delaying the clotting of freshly sheep blood. Heparin occurs in the body tissues of mammals and could be detected in the lung, liver, spleen, heart, mucosa, skin, plasma and lymph etc.

The active substance in this application is prepared exclusively from the intestinal mucosa of pigs.

Heparin is a biopolymer belonging to the class of mucopolysaccharides. More than 70% of the structure of conventional heparins can be accounted for by repeating disaccharide units consisting of 1, 4-linked L-iduronic acid and D-glucosamine, the iduronic acid residues are O-sulfated at position 2, and the glucosamine residues are N-sulfated and O-sulfated at position 6.
Appearance: White or almost white powder, hygroscopic, freely soluble in water. It is practically odourless.

Solubility: Freely soluble in water, insoluble in ethanol, acetone, or other organic solvents

Heparin sodium is the subject of a European Pharmacopoeia monograph.

Synthesis of the active substance from the designated starting materials has been adequately described and appropriate in-process controls and intermediate specifications are applied. Satisfactory specifications are in place for all starting materials and reagents, and these are supported by relevant certificates of analysis.

Appropriate proof-of-structure data have been supplied for the active substance. All potential known impurities have been identified and characterised.

An appropriate specification is provided for the active substance. Analytical methods have been appropriately validated and are satisfactory for ensuring compliance with the relevant specifications. Batch analysis data are provided and comply with the proposed specification. Satisfactory certificates of analysis have been provided for all working standards.

Suitable specifications have been provided for all packaging used. The primary packaging has been shown to comply with current European regulations concerning materials in contact with food.

Appropriate stability data have been generated supporting a suitable retest period when stored in the proposed packaging.

II.3 DRUG PRODUCT
Pharmaceutical development
A satisfactory account of the pharmaceutical development has been provided.
An acceptable panel of state-of-the-art analytical techniques, taking into account relevant aspects of the approach to assess biosimilarity, have been used to establish the comparability of the physicochemical properties and biological activity between the drug substance, the corresponding drug product and other drug products currently available on the EU market.

Overall, the data provided shows a sufficient degree of comparability between the API, the corresponding drug product and other licensed products. The proposed comparability exercise in this application is considered a proportionate and justifiable advance on the approach adopted to date for 10a applications for a biological substance.

All excipients comply with either their respective European/national monographs, or a suitable in-house specification. Satisfactory Certificates of Analysis have been provided for all excipients.

No excipients of animal or human origin are used in the finished product(s).

This product does not contain or consist of genetically modified organisms (GMO).

Manufacture of the product(s)
A description and flow-chart of the manufacturing method has been provided.

A satisfactory batch formula has been provided for the manufacture of the product, along with an appropriate account of the manufacturing process. The manufacturing process has been validated and has shown satisfactory results.

Finished Product Specification
The finished product specification is satisfactory. The test methods have been described and adequately validated. Batch data have been provided that comply with the release specification. Certificates of Analysis have been provided for any working standards used.
Stability
Finished product stability studies have been conducted in accordance with current guidelines, using batches of the finished product stored in the packaging proposed for marketing. Based on the results, a shelf-life of 5 years for the unopened vial with no special storage conditions, is acceptable.

Shelf-life after first opening:
Chemical and physical in use stability has been demonstrated for 28 days at 20 - 35°C. From a microbiological point of view, once opened, the product may be stored for a maximum of 28 days when stored below 25°C. Other in-use storage times and conditions are the responsibility of the user.

Shelf-life after dilution:
Chemical and physical stability after dilution in glucose 5% and in 0.9% sodium chloride solution has been demonstrated for 48 hours at 18-22°C.

From a microbiological point of view, the product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user.

Suitable post approval stability commitments have been provided to continue stability testing on batches of finished product.

II.4 Discussion on chemical, pharmaceutical and biological aspects
The grant of a marketing authorisation is recommended.

III NON-CLINICAL ASPECTS

III.1 Introduction
This application was submitted under Article 10a of Directive 2001/83/EC, as amended, a well-established use application. No new non-clinical studies were submitted, as the data submitted for this application is in the form of literature references.

The overview contains a satisfactory review of the available literature on heparin and is composed of extracts/abstracts from the referred literature.

III.2 Pharmacology
The pharmacology of heparin is well known and adequately described in the applicant’s non-clinical overview.

No new data have been submitted and none are required for applications of this type.

III.3 Pharmacokinetics (PK)
The pharmacokinetics of heparin are well known and adequately described in the applicant’s non-clinical overview.

No new data have been submitted and none are required for applications of this type.
III.4 Toxicology
No new data have been submitted and none are required for applications of this type. The toxicological properties of heparin are well known and are adequately described in the applicant’s non-clinical overview.

III.5 Ecotoxicity/Environmental Risk Assessment
Suitable justification has been provided for non-submission of an Environmental Risk Assessment. As the application is for a product containing an active substance of well-established use that will be used in place of existing products, an increase in environmental exposure is not anticipated following approval of the Marketing Authorisation for the proposed product.

III.6 Discussion on the non-clinical aspects
The grant of a marketing authorisation is recommended.

IV CLINICAL ASPECTS

IV.1 Introduction
Heparin is confirmed to have a well-established use in the EU, with a European reference date of 1939. The applicant has submitted a clinical overview reviewing the available literature, summarising the clinical pharmacology, efficacy and safety of heparin in the proposed indications and posology, and supporting the other content of the SmPC.

No new clinical studies were submitted, as the data submitted for this application is in the form of literature references.

The clinical overview refers to recent publications and gives a review and discussion of clinical pharmacology, efficacy and tolerability aspects. The search strategy was adequate. The overview includes a justification to bridge the proposed product to products used in the literature, based on similarities in formulation and physicochemical characteristics. This is acceptable.

IV. 2 Pharmacokinetics (PK)
The PK properties of heparin are well known, these have been adequately described by the applicant and reflected in the SmPC.

Heparin is not absorbed from the gastrointestinal tract and must be administered parenterally.

After intravenous or subcutaneous injection heparin is extensively bound to plasma proteins. It does not cross the placenta and it is not distributed into breast milk.

The half-life of heparin depends on its dose and route as well as the method of calculation and is subject to wide inter- and intra-individual variation; a range of 90 to 120 minutes has been cited. It may be slightly prolonged in renal impairment, decreased in patients with pulmonary embolism, and either increased or decreased in patients with liver disorders.

Given the short half-life of about one to two hours, heparin must be given either frequently or as a continuous infusion. Heparin is removed from the circulation either by uptake by macrophage cells or by renal clearance. It is excreted in the urine, mainly as metabolites, although after large doses up to 50% may be excreted unchanged.
IV.3 Pharmacodynamics
The primary and secondary pharmacology of heparin are well known, these have been adequately described by the applicant and reflected in the SmPC.

Heparin binds to the enzyme inhibitor antithrombin III causing a conformational change that results in its activation that then inactivates thrombin and other proteases involved in blood clotting, most notably factor Xa. The rate of inactivation of these proteases by antithrombin III can increase by up to 700-fold following binding of heparin. The effects of heparin are measured by partial thromboplastin time.

IV.4 Clinical efficacy
The clinical efficacy of heparin is well-known and adequately discussed in the clinical overview.

No new efficacy data are presented or are required for applications of this type

The Applicant refers to published reviews and meta-analyses of clinical experience with heparin.

It is agreed that, mainly based on accumulated clinical experience over several decades, the use of heparin in the proposed indications and its posology is well established, although the indications and usage vary across the EU. Whilst in many settings heparin is superceded by newer agents such as LMWH – it remains useful in the acute setting.

IV.5 Clinical safety
The Applicant provides an adequate overview of adverse events including haemorrhage, osteoporosis, thrombocytopenia, hyperkalaemia and abnormal liver function test results. Clinical safety in special populations is also described, as well as the interaction profile.

Based on accumulated clinical experience over several decades, the adverse event profile of heparin is well established. This adequately reflected in the proposed SmPC in sections 4.3-4.9.

Because of risk due to accumulation in young children, Heparin Panpharma should not be given for more than a week in young children (less than 3 years old). The minimum amount of benzyl alcohol at which toxicity may occur is not known. For this reason Heparin Panpharma should not be given to newborn babies (up to 4 weeks old).

IV.6 Risk Management Plan (RMP)
The Applicant has submitted a RMP, in accordance with the requirements of Directive 2001/83/EC, as amended. The Applicant proposes only routine pharmacovigilance and routine risk minimisation measures for all safety concerns. This is acceptable.
IV.7 Discussion on the clinical aspects
The grant of a marketing authorisation is recommended for this application.

V USER CONSULTATION
A user consultation with target patient groups on the PIL has been performed on the basis of a bridging report making reference to Heparin 5 000 IU/ml Solution for injection (ELC GROUP s.r.o). The bridging report submitted by the MAH is acceptable.

VI OVERALL CONCLUSION, BENEFIT/RISK ASSESSMENT AND RECOMMENDATION
The quality of the product is acceptable, and no new non-clinical or clinical safety concerns have been identified from the literature. Extensive clinical experience with heparin is considered to have demonstrated the therapeutic value of the compound. The benefit/risk is, therefore, considered to be positive.

The Summary of Product Characteristics (SmPC), Patient Information Leaflet (PIL) and labelling are satisfactory, and in line with current guidelines.

In accordance with Directive 2012/84/EU, the current approved UK versions of the SmPC and PIL for this product is available on the MHRA website.

The following text is the currently approved label text. No label mock-ups have been provided for this product. In accordance with medicines legislation, this product shall not be marketed in the UK until approval of the label mock-ups has been obtained.
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND THE IMMEDIATE PACKAGING

1. NAME OF THE MEDICINAL PRODUCT

Heparin Panpharma 5,000 IU/ml, solution for injection.

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Heparin sodium 5,000 IU/ml.
One vial of 5 ml contains 25,000 IU of heparin sodium.
Each 1 ml of solution for injection contains 5,000 IU of sodium heparin.

3. LIST OF EXCIPIENTS

Excipients: Benzyl alcohol, sodium chloride, sodium hydroxide (for pH adjustment), hydrochloric acid (for pH adjustment), water for injections.

4. PHARMACEUTICAL FORM AND CONTENTS

Solution for injection (5,000 IU/ml).
5 x
10 x
25 x

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Subcutaneous use, intravenous use.
Read the package leaflet before use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

NA

8. EXPIRY DATE

EXP. MM/YYYY

9. SPECIAL STORAGE CONDITIONS
“Do not freeze”

<table>
<thead>
<tr>
<th>10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. NAME AND ADDRESS OF THE MARKETING AUTHORIZATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANPHARMA</td>
</tr>
<tr>
<td>Z.I. du Clairay 35133</td>
</tr>
<tr>
<td>Lorient</td>
</tr>
<tr>
<td>France</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. MARKETING AUTHORIZATION NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL 44124/0016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. BATCH NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. GENERAL CLASSIFICATION FOR SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal product subject to medical prescription</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. INSTRUCTIONS ON USE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. INFORMATION IN BRAILLE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. UNIQUE IDENTIFIER – 2D BARCODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D barcode carrying the unique identifier included.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. UNIQUE IDENTIFIER – HUMAN READABLE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC: {number}</td>
</tr>
<tr>
<td>SN: {number}</td>
</tr>
<tr>
<td>NN: {number}</td>
</tr>
</tbody>
</table>
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION

Heparin Panpharma 5,000 I.U./ml, solution for injection.
Heparin sodium.
Subcutaneous use, intravenous use.

2. METHOD OF ADMINISTRATION

Subcutaneous use, intravenous use.

3. EXPIRY DATE

EXP: MM/YYYY

4. BATCH NUMBER

5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT

25,000 IU of heparin sodium in 5 ml vials.

6. OTHER

Medicinal product subject to medical prescription.
TABLE OF CONTENT OF THE PAR UPDATE

Steps taken after the initial procedure with an influence on the Public Assessment Report (non-safety variations of clinical significance).

Please note that only non-safety variations of clinical significance are recorded below and in the annexes to this PAR. The assessment of safety variations where significant changes are made are recorded on the MHRA website or European Medicines Agency (EMA) website. Minor changes to the product licence are recorded in the current SmPC and/or PIL available on the MHRA website.

<table>
<thead>
<tr>
<th>Application type</th>
<th>Scope</th>
<th>Product information affected</th>
<th>Date of start of the procedure</th>
<th>Date of end of procedure</th>
<th>Outcome</th>
<th>Assessment report attached Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>