Public Assessment Report

Decentralised Procedure

Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg film-coated tablets
Levodopa/Carbidopa/Entacapone Torrent, 75 mg/18.75 mg/200 mg film-coated tablets
Levodopa/Carbidopa/Entacapone Torrent 100 mg/25 mg/200 mg film-coated tablets
Levodopa/Carbidopa/Entacapone Torrent 125 mg/31.25 mg/200 mg film-coated tablets
Levodopa/Carbidopa/Entacapone Torrent 150 mg/37.5 mg/200 mg film-coated tablets
Levodopa/Carbidopa/Entacapone Torrent 200 mg/50 mg/200 mg film-coated tablets

(Levodopa, carbidopa and entacapone)

Procedure No: UK/H/5568/001-006/DC

UK Licence No: PL 36687/0125-0130

Torrent Pharma (UK) Limited
LAY SUMMARY

Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (levodopa, carbidopa and entacapone)

The products Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets may be referred to as ‘Levodopa/Carbidopa/Entacapone film-coated tablets’ in this report.

This is a summary of the Public Assessment Report (PAR) for Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (PL 36687/0125-0130; UK/H/5568/001-006/DC). It explains how Levodopa/Carbidopa/Entacapone film-coated tablets were assessed and their authorisation recommended, as well as their conditions of use. It is not intended to provide practical advice on how to use Levodopa/Carbidopa/Entacapone film-coated tablets.

For practical information about using Levodopa/Carbidopa/Entacapone film-coated tablets patients should read the package leaflet or contact their doctor or pharmacist.

What are Levodopa/Carbidopa/Entacapone film-coated tablets and what are they used for?
Levodopa/Carbidopa/Entacapone film-coated tablets are ‘generic’ medicines. This means that Levodopa/Carbidopa/Entacapone film-coated tablets are similar to reference medicines already authorised in the European Union (EU) called Stalevo 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (Orion Corporation, Finland).

Stalevo 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets may be referred to as Stalevo film-coated tablets in this report.

Levodopa/Carbidopa/Entacapone film-coated tablets are used for the treatment of Parkinson’s disease.

How do Levodopa/Carbidopa/Entacapone film-coated tablets work?
Parkinson’s disease is caused by low levels of a substance called dopamine in the brain.

Levodopa/Carbidopa/Entacapone film-coated tablets contain three active substances (levodopa, carbidopa and entacapone) in one film-coated tablet. Levodopa increases the amount of dopamine and hence reduces the symptoms of Parkinson’s disease. Carbidopa and entacapone improve the antiparkinson effects of levodopa.

How are Levodopa/Carbidopa/Entacapone film-coated tablets used?
Levodopa/Carbidopa/Entacapone film-coated tablets are taken by mouth.

Levodopa/Carbidopa/Entacapone film-coated tablets can only be obtained with a prescription. The tablets should be taken exactly as told by the doctor or pharmacist. The patient should check with the doctor or pharmacist if not sure.
For adults and elderly:
The patient’s doctor will tell the patient exactly how many tablets of this medicine to take each day.

The tablets are not intended to be split or broken into smaller pieces.

The patient should take only one tablet each time.

Depending on how the patient responds to treatment, the patient’s doctor may suggest a higher or lower dose.

If the patient is taking Levodopa/Carbidopa/Entacapone 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg or 150 mg/37.5 mg/200 mg tablets, no more than 10 tablets per day should be taken.

If the patient is taking Levodopa/Carbidopa/Entacapone 200 mg/50 mg/200 mg, he/she should not take more than 7 tablets of this strength per day.

The patient should speak to the doctor or pharmacist if he/she thinks the effect of this medicine is too strong or too weak, or if he/she experiences possible side effects.

For further information on how Levodopa/Carbidopa/Entacapone film-coated tablets are used, please refer to the package leaflet and Summaries of Product Characteristics available on the Medicines and Healthcare products Regulatory Agency (MHRA) website.

What benefits of Levodopa/Carbidopa/Entacapone film-coated tablets have been shown in studies?
As Levodopa/Carbidopa/Entacapone film-coated tablets are generic medicines, studies in patients have been limited to tests to determine that Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets are bioequivalent to the reference medicines, Stalevo 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets, respectively. Two medicines are bioequivalent when they produce the same levels of the active substance in the body.

In addition, the Marketing Authorisation Holder (Torrent Pharma (UK) Limited) provided data from the published literature on levodopa, carbidopa and entacapone.

What are the possible side effects of Levodopa/Carbidopa/Entacapone Torrent film-coated tablets?
Because Levodopa/Carbidopa/Entacapone Torrent film-coated tablets are generic medicines and are bioequivalent to the reference medicines Stalevo film-coated tablets (Orion Corporation, Finland), the possible side effects are taken as being the same as those of the reference medicines.

For the full list of restrictions, see the package leaflet available on the MHRA website.

Why are Levodopa/Carbidopa/Entacapone Torrent film-coated tablets approved?
It was concluded that, in accordance with EU requirements, Levodopa/Carbidopa/Entacapone film-coated tablets have been shown to have comparable quality and to be bioequivalent to Stalevo film-coated tablets (Orion Corporation, Finland). Therefore, the view was that, as for Stalevo film-coated tablets (Orion Corporation, Finland), the benefits outweighs the identified risks.
What measures are being taken to ensure the safe and effective use of Levodopa/Carbidopa/Entacapone film-coated tablets?

A risk management plan has been developed to ensure that Levodopa/Carbidopa/Entacapone film-coated tablets are used as safely as possible. Based on this plan, safety information has been included in the Summaries of Product Characteristics and the package leaflet for Levodopa/Carbidopa/Entacapone film-coated tablets, including the appropriate precautions to be followed by healthcare professionals and patients.

Known side effects are continuously monitored. Furthermore new safety signals reported by patients and healthcare professionals will be monitored and reviewed continuously as well.

Other information about Levodopa/Carbidopa/Entacapone film-coated tablets.

Romania and the UK agreed to grant Marketing Authorisations for Levodopa/Carbidopa/Entacapone film-coated tablets on 29 July 2014. Marketing Authorisations were granted in the UK on 12 September 2014.

The full PAR for Levodopa/Carbidopa/Entacapone film-coated tablets follows this summary.

For more information about treatment with Levodopa/Carbidopa/Entacapone film-coated tablets, read the package leaflet, or contact your doctor or pharmacist.

This summary was last updated in December 2014.
TABLE OF CONTENTS

Module 1: Information about the initial procedure Page 6
Module 2: Summary of Product Characteristics Page 7
Module 3: Patient Information Leaflet Page 8
Module 4: Labelling Page 9
Module 5: Scientific discussion during initial procedure Page 21
 I Introduction
 II Quality Aspects
 III Non-clinical aspects
 IV Clinical aspects
 V User Consultation
 VI Overall conclusion, benefit/risk assessment and recommendation
Module 6: Steps taken after the initial procedure Page 36
Module 1

Information about the initial procedure

<table>
<thead>
<tr>
<th>Name(s) of the product in the Reference Member State</th>
<th>UK/H/5568/001/DC: Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg film-coated tablets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UK/H/5568/002/DC: Levodopa/Carbidopa/Entacapone Torrent 75 mg/18.75 mg/200 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td>UK/H/5568/003/DC: Levodopa/Carbidopa/Entacapone Torrent 100 mg/25 mg/200 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td>UK/H/5568/004/DC: Levodopa/Carbidopa/Entacapone Torrent 125 mg/31.25 mg/200 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td>UK/H/5568/005/DC: Levodopa/Carbidopa/Entacapone Torrent 150 mg/37.5 mg/200 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td>UK/H/5568/006/DC: Levodopa/Carbidopa/Entacapone Torrent 200 mg/50 mg/200 mg film-coated tablets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Article 10(1), generic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name(s) of the active substance(s) (INN)</td>
<td>Levodopa, carbidopa and entacapone</td>
</tr>
<tr>
<td>Pharmacotherapeutic classification (ATC code)</td>
<td>Anti-parkinson drugs, dopa and dopa derivatives (ATC code: N04BA03)</td>
</tr>
<tr>
<td>Pharmaceutical form and strengths</td>
<td>Film-coated tablets;Strengths- Levodopa/carbidopa/entacapone: 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg, 200 mg/50 mg/200 mg</td>
</tr>
<tr>
<td>Reference number(s) for the Decentralised Procedure</td>
<td>UK/H/5568/001-006/DC</td>
</tr>
<tr>
<td>Reference Member State (RMS)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Concerned Member State(s) (CMS)</td>
<td>Romania</td>
</tr>
<tr>
<td>Timetable</td>
<td>Day 210 – 29 July 2014</td>
</tr>
<tr>
<td>Marketing Authorisation Number(s)</td>
<td>PL 36687/0125-0130</td>
</tr>
<tr>
<td>Name and address of the authorisation holder</td>
<td>Torrent Pharma (UK) Ltd.Unit 4Charlwood CourtCounty Oak WayCrawleyWest SussexRH11 7XAUnited Kingdom</td>
</tr>
</tbody>
</table>
Module 2
Summary of Product Characteristics

In accordance with Directive 2010/84/EU, the Summaries of Product Characteristics (SmPCs) for products granted Marketing Authorisations at a national level are available on the MHRA website.
Module 3
Patient Information Leaflet

In accordance with Directive 2010/84/EU, the Patient Information Leaflets (PILs) for products granted Marketing Authorisations at a national level are available on the MHRA website.
Levodopa/Carbidopa/Entacapone Torrent film-coated tablets

Each film-coated tablet contains 75 mg of levodopa, 18.75 mg of carbidopa and 200 mg of entacapone.

Read the package leaflet before use.

KEEP OUT OF THE SIGHT AND REACH OF CHILDREN.

Do not eat or open silica gel canister inside the bottle.

Shelf life after first opening: 6 months

Lot: [Blank]

Exp: [Blank]

Varnish Free

Torrent Pharma (UK) Ltd
Unit 4, Chalkwell Court, Chalkwell Way, Chelmsford, Essex CM1 6TA
United Kingdom
PL 80018020

Levodopa/Carbidopa/Entacapone Torrent 75/18.75/200 mg film-coated tablets

Levodopa/Carbidopa/Entacapone

30 film-coated tablets

Levodopa/Carbidopa/Entacapone Torrent 75/18.75/200 mg film-coated tablets

Levodopa/Carbidopa/Entacapone

30 film-coated tablets
Levodopa/Carbidopa/Entacapone Torrent film-coated tablets

Each film-coated tablet contains 200 mg of levodopa, 50 mg of carbidopa and 200 mg of entacapone.

 Oral use.

Read the package leaflet before use.
KEEP OUT OF THE SIGHT AND REACH OF CHILDREN.

Do not eat or open until gel-capsule inside the bottle.
Shield the bottle after first opening: 6 months.
Module 5
Scientific discussion during initial procedure

I INTRODUCTION
Based on the review of the data on quality, safety and efficacy, the UK and Romania considered that the applications for Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (PL 36687/0125-0130; UK/H/5568/001-006/DC) could be approved. These are prescription-only medicines (POM) indicated for the treatment of adult patients with Parkinson’s disease and end-of-dose motor fluctuations not stabilised on levodopa/dopa decarboxylase (DDC) inhibitor treatment.

The products may be referred to as Levodopa/Carbidopa/Entacapone Torrent film-coated tablets in this report.

These applications were submitted using the Decentralised Procedure (DCP), with the UK as Reference Member State (RMS), and Romania as Concerned Member State (CMS). The applications were submitted under Article 10(1) of Directive 2001/83/EC, as amended, claiming to be generic medicinal products of the originator medicinal products Stalevo 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (Orion Corporation, Finland) which were authorised in the EEA via the Centralised Procedure.

Stalevo 50 mg/12.5 mg/200 mg, 100 mg/25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets were authorised on 17 October 2003. Stalevo 75 mg/18.75 mg/200 mg and 125 mg/31.25 mg/200 mg film-coated tablets were authorised on 27 March 2009, as extension applications for new dosage strengths to the existing Marketing Authorisations for Stalevo film-coated tablets authorised on 17 October 2003.

The active ingredients in these products are levodopa, carbidopa and entacapone. Levodopa mediates the antiparkinsonian effect whereas carbidopa and entacapone inhibit the peripheral metabolism of levodopa.

Levodopa is a precursor of dopamine and is given as replacement therapy in Parkinson's disease.

Carbidopa is a peripheral dopa decarboxylase inhibitor. It prevents metabolism of levodopa to dopamine in the peripheral circulation, ensuring that a higher proportion of the dose reaches the brain, where dopamine acts. A lower dose of levodopa can be used, reducing the incidence and severity of side effects.

Entacapone is a reversible, specific and mainly peripherally acting catechol-O-methyltransferase (COMT) inhibitor. Entacapone decreases the metabolic loss of levodopa to 3-O-methyldopa (3-OMD) mainly in peripheral tissues. The amount of levodopa available to the brain is increased, thus prolongs the clinical response to levodopa.

Three bioequivalence studies were submitted to support these applications; two bioequivalence studies comparing the applicant’s test Fixed Drug Formulation (FDC) of Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg tablet with the reference product Stalevo tablets containing Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg (Orion Pharma GmbH, Germany), under fasting conditions and one bioequivalence study comparing the applicant’s test product FDC of Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg versus the reference product Stalevo tablets containing Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg (Orion Corporation, Finland).
under fasting conditions. The bioequivalence studies were carried out in accordance with Good Clinical Practice (GCP).

With the exception of the bioequivalence studies, no new non-clinical or clinical data were submitted, which is acceptable given that the applications were based on being generic medicinal products of originator products that have been in clinical use for over 10 years.

The RMS has been assured that acceptable standards of Good Manufacturing Practice (GMP) are in place at all sites responsible for the manufacture, assembly and batch release of these products. For manufacturing sites within the Community, the RMS has accepted copies of current manufacturing authorisations issued by inspection services of the competent authorities as certification that acceptable standards of GMP are in place at those sites. For manufacturing sites outside the Community, the RMS has accepted copies of current GMP Certificates of satisfactory inspection summary reports, ‘close-out letters’ or ‘exchange of information’ issued by the inspection services of the competent authorities (or those countries with which the EEA has a Mutual Recognition Agreement for their own territories) as certification that acceptable standards of GMP are in place at those non-Community sites.

The UK and Romania considered that the applications could be approved at the end of procedure (Day 210) on 29 July 2014. After a subsequent national phase, licences were granted in the UK on 12 September 2014.
II QUALITY ASPECTS

DRUG SUBSTANCE - LEVODOPA

INN: Levodopa
Chemical name(s): (2S)-2-Amino-3-(3,4-dihydroxyphenyl)propanoic acid
Molecular formula: C9H11NO4
Structure:

\[
\begin{align*}
\text{Mr:} & \quad 197.2 \\
\text{Appearance:} & \quad \text{White or almost white, crystalline powder.} \\
\text{Solubility:} & \quad \text{Slightly soluble in water, practically insoluble in ethanol (96 per cent). It is freely soluble in 1 M hydrochloric acid and sparingly soluble in 0.1 M hydrochloric acid.}
\end{align*}
\]

Levodopa is the subject of a European Pharmacopoeia monograph.

All aspects of the manufacture and control of the active substance, levodopa, are covered by a European Directorate for the Quality of Medicines and Healthcare (EDQM) Certificate of Suitability.

DRUG SUBSTANCE - CARBIDOPA

INN: Carbidopa
Chemical name(s): (2S)-3-(3,4-Dihydroxyphenyl)-2-hydrazino-2-methylpropanoic acid monohydrate.
Molecular formula: C10H14N2O4H2O
Structure:

\[
\begin{align*}
\text{Mr:} & \quad 244.2 \\
\text{Appearance:} & \quad \text{White or yellowish-white powder.} \\
\text{Solubility:} & \quad \text{Slightly soluble in water, very slightly soluble in ethanol (96 per cent), practically insoluble in methylene chloride. It dissolves in dilute solutions of mineral acids.}
\end{align*}
\]

Carbidopa is the subject of a European Pharmacopoeia monograph.

All aspects of the manufacture and control of the active substance, carbidopa, are covered by a European Directorate for the Quality of Medicines and Healthcare (EDQM) Certificate of Suitability.

DRUG SUBSTANCE - ENTACAPONE

INN: Entacapone
Chemical name(s): (2E)-2-Cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide
Molecular formula: C14H15N3O5
Structure:

![Structure diagram]

Mr: 305.3
Appearance: A greenish yellow or yellow powder.
Solubility: Practically insoluble in water, soluble or sparingly soluble in acetone, and slightly soluble in anhydrous ethanol.

Entacapone is the subject of a European Pharmacopoeia monograph.

All aspects of the manufacture and control of the active substance, entacapone, are covered by a European Directorate for the Quality of Medicines and Healthcare (EDQM) Certificate of Suitability.

MEDICINAL PRODUCT

Description and composition

1. Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg strength tablets are light brown to greyish-red coloured, round, biconvex film-coated tablets with a diameter of approximately 11.30 cm, debossed with ‘50’ on one side, and plain on the other.

 Each Levodopa/Carbidopa/Entacapone 50 mg/12.5 mg/200 mg tablet contains 50 mg of levodopa, 12.5 mg of carbidopa and 200 mg of entacapone.

2. Levodopa/Carbidopa/Entacapone Torrent 75 mg/18.75 mg/200 mg strength tablets are light brown to light pink coloured, approximately 15.20 x 7.20 mm, oval film-coated tablets, debossed with ‘75’ on one side, and plain on the other.

 Each Levodopa/Carbidopa/Entacapone 75 mg/18.75 mg/200 mg tablet contains 75 mg of levodopa, 18.75 mg of carbidopa and 200 mg of entacapone.

3. Levodopa/Carbidopa/Entacapone Torrent 100 mg/25 mg/200 mg strength tablets are light brown to greyish-red, oval shaped approx. 16.70 x 7.70 mm, film-coated tablets, debossed with “100” on one side and plain on other side.

 Each Levodopa/Carbidopa/Entacapone 100 mg/25 mg/200 mg tablet contains 100 mg of levodopa, 25 mg of carbidopa and 200 mg of entacapone.

4. Levodopa/Carbidopa/Entacapone Torrent 125 mg/31.25 mg/200 mg strength tablets are light brown to light pink coloured, elongated-ellipse shaped approx. 15.20 x 9.70 mm, film-coated tablets, debossed with “125” on one side and plain on other side.

 Each Levodopa/Carbidopa/Entacapone 125 mg/31.25 mg/200 mg tablet contains 125 mg of levodopa, 31.25 mg of carbidopa and 200 mg of entacapone.

5. Levodopa/Carbidopa/Entacapone Torrent 150 mg/37.5 mg/200 mg strength tablets are light brown to greyish-red coloured, elongated-ellipse shaped approx. 16.20 x 7.10 mm, film-coated tablets, debossed with “150” on one side and plain on other side.

 Each Levodopa/Carbidopa/Entacapone 150 mg/37.5 mg/200 mg tablet contains 150 mg of levodopa, 37.5 mg of carbidopa and 200 mg of entacapone.
Levodopa/Carbidopa/Entacapone Torrent film-coated tablets

6. Levodopa/Carbidopa/Entacapone Torrent 200 mg/50 mg/200 mg strength tablets are dark brownish-red coloured, oval shaped approx. 19.15 x 9.05 mm, film-coated tablets, debossed with "200" on one side and plain on other side.

Each Levodopa/Carbidopa/Entacapone 200 mg/50 mg/200 mg tablet contains 200 mg of levodopa, 50 mg of carbidopa and 200 mg of entacapone.

The products also contain pharmaceutical excipients in the tablet cores and coatings, namely microcrystalline cellulose, crospovidone (Type B), Povidone K-30, magnesium stearate, sodium citrate, hypromellose 2910 (6cps), Macrogol 6000, polysorbate 80, titanium dioxide (E171) and red iron oxide (E172).

In addition, Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 100 mg/25 mg/200 mg and 150 mg/37.5 mg/200 mg film-coated tablets contain yellow iron oxide (E172). Appropriate justification for the inclusion of each excipient has been provided.

With the exception of red iron oxide (E172) and yellow iron oxide (E172), all excipients comply with their respective European Pharmacopoeia monographs. Red iron oxide red (E172) and yellow iron oxide yellow (E172) are compliant with their respective United States Pharmacopoeia-National Formulary specifications. Red iron oxide (E172) and yellow iron oxide (E172) are also in compliance with current EU Directives concerning the use of colouring agents.

None of the excipients contain materials of animal or human origin.

No genetically modified organisms (GMO) have been used in the preparation of these excipients.

Pharmaceutical Development

The objective of the development programme was to formulate safe, efficacious, stable film-coated tablets containing levodopa, carbidopa and entacapone, which were bioequivalent to Stalevo 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (Orion Corporation, Finland).

Suitable pharmaceutical development data have been provided for these applications.

Comparative *in-vitro* dissolution and impurity profiles have been provided for these products and the respective reference products Stalevo 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets (Orion Pharma, Finland). The dissolution and impurity profiles were satisfactory.

Manufacturing Process

Satisfactory batch formulae have been provided for the manufacture of the products, along with an appropriate account of the manufacturing process. Based on production-scale batches, the manufacturing process has been validated and has shown satisfactory results. The Marketing Authorisation holder has committed to performing process validation on future production-scale batches.

Control of Finished Product

The finished product specifications are acceptable. Test methods have been described and have been validated adequately. Batch data have been provided and comply with the release specifications. Certificates of Analysis have been provided for all working standards used.
Container-Closure System
The products are packaged in either:

1. Oriented polyamide/aluminium/polyvinylchloride/aluminium (OPA/Al/PVC/Al) blisters.
2. High-density polyethylene (HDPE) bottles, with continuous threaded closures and induction sealing wads or HDPE bottles, neck finish with child-resistant closures and induction sealing wads. Each HDPE bottle contains 1 silica gel canister.

The products are available in pack sizes of 10, 30, 100, 130, 175, 250 and 500 (hospital pack, for use on more than one patient) film-coated tablets.

Not all pack sizes may be marketed.

Satisfactory specifications and Certificates of Analysis have been provided for all packaging components. All primary packaging complies with current European regulations concerning materials in contact with foodstuff.

Stability of the Product
Finished product stability studies were performed in accordance with current guidelines on batches of finished product in the packaging proposed for marketing. Based on the results, the following shelf-lives have been accepted:

- 3 years for product packaged in blisters and unopened HDPE bottles.
- 6 months after first opening, for product in opened HDPE bottles.

These medicinal products do not require any special storage conditions.

Suitable post approval stability commitments have been provided to continue stability testing on batches of finished product.

Bioequivalence/Bioavailability
Satisfactory Certificates of Analysis have been provided for the test and reference batches used in the bioequivalence studies. The bioequivalence study is discussed in Section III.3, Clinical Aspects.

Summaries of Product Characteristics (SmPCs), Product Information Leaflet (PIL) and Labels
The SmPCs, PIL and labels are satisfactory from a pharmaceutical perspective.

Marketing Authorisation Application (MAA) Forms
The MAA forms are satisfactory from a pharmaceutical perspective.

Expert Report (Quality Overall Summary)
The quality overall summary has been written by an appropriately qualified person and is a suitable summary of the pharmaceutical aspects of the dossier.

Conclusion
It is recommended that Marketing Authorisations are granted for Levodopa/Carbidopa/Entacapone Torrent film-coated tablets, from a quality point of view.

III.2 NON-CLINICAL ASPECTS
As the pharmacodynamic, pharmacokinetic and toxicological properties of levodopa, carbidopa and entacapone are well-known, no new non-clinical data have been submitted and none are required.

The non-clinical overview has been written by an appropriately qualified person and is satisfactory, providing an appropriate review of the relevant non-clinical pharmacology, pharmacokinetics and toxicology.
The Marketing Authorisation Holder has provided adequate justification for not submitting an Environment Risk Assessment (ERA). As the applications are for generic versions of already authorised products, it is not expected that environmental exposure will increase following approval of the Marketing Authorisations for the proposed products. An environmental risk assessment is therefore not deemed necessary.

It is recommended that Marketing Authorisations are granted for Levodopa/Carbidopa/Entacapone Torrent film-coated tablets, from a non-clinical point of view.

IV. CLINICAL ASPECTS

IV.1 Pharmacokinetics

The clinical pharmacology of levodopa, carbidopa and entacapone is well-known. With the exception of data from the bioequivalence studies detailed below, no new pharmacokinetic data is provided or required for these applications.

The Marketing Authorisation Holder submitted the following bioequivalence studies to support the applications:

Study 1
An open-label, randomised, single-dose, three-period, two-treatment, three-sequence, partial replicated, crossover, bioequivalence study comparing the test product Fixed Drug Formulation (FDC) of Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg tablet (Torrent Pharmaceuticals Limited) versus the reference product Stalevo tablets (containing Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg; Orion Corporation, Finland) in healthy human volunteers under fasting conditions.

Subjects were administered a single dose of either the test or reference product with 200 ml of water at room temperature after at least an 8-hour overnight fast, according to the randomisation schedule. Blood sampling was performed pre-dose and up to 18 hours post dose in each treatment period. A washout period of 7 days was kept between each consecutive dosing period. The pharmacokinetic results are presented below:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>% ISCV</th>
<th>Method for Bioequivalence Analysis</th>
<th>Bioequivalence Acceptance Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>22.99</td>
<td>Two one-sided tests Procedure</td>
<td>80.00-125.00%</td>
</tr>
<tr>
<td>Carbidopa</td>
<td>27.04</td>
<td>Two one-sided tests Procedure</td>
<td>80.00-125.00%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>47.88</td>
<td>Scaled-average-bioequivalence procedure</td>
<td>70.80-141.24%</td>
</tr>
</tbody>
</table>

\(C_{\text{max}} \) maximum plasma concentration
Evaluation of bioequivalence

Pharmacokinetic parameters (geometric Least Square Mean [LSM] ratios and confidence intervals [CI]) for levodopa, carbidopa and entacapone.

<table>
<thead>
<tr>
<th>Scaled-Average-Bioequivalence:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PK Parameters</td>
<td>Geometric LSM Ratio (%)</td>
<td>(Lower limit-Upper limit)</td>
</tr>
<tr>
<td>Entacapone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>96.36</td>
<td>78.52 - 118.26</td>
</tr>
<tr>
<td>Two One-sided Tests Procedure:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK Parameters</td>
<td>Geometric LSM Ratio (%)</td>
<td>90% CI (Lower limit-Upper limit)</td>
</tr>
<tr>
<td>Levodopa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>104.98</td>
<td>97.98 - 112.50</td>
</tr>
<tr>
<td>Ln(AUC(0-t))</td>
<td>94.40</td>
<td>88.91 - 100.22</td>
</tr>
<tr>
<td>Carbidopa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>82.01</td>
<td>73.47 - 91.55</td>
</tr>
<tr>
<td>Ln(AUC(0-t))</td>
<td>81.78</td>
<td>74.68 - 89.56</td>
</tr>
<tr>
<td>Entacapone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(AUC(0-t))</td>
<td>100.25</td>
<td>95.43 - 105.32</td>
</tr>
</tbody>
</table>

AUC\(_{0-t}\) area under the plasma concentration-time curve from time zero to t hours
C\(_{max}\) maximum plasma concentration

Bioequivalence Discussion and Conclusion

The Guideline on the Investigation of Bioequivalence (CPMP/EWP/QWP/1401/98 Rev. 1/Corr*) defines the confidence limits for ratio of geometric means for acceptance of bioequivalence as 80.00% to 125.00% for C\(_{max}\) and AUC values.

The intra-subject coefficient of variance (%ISCV) of the reference formulation for the C\(_{max}\) of levodopa and carbidopa was < 30%, hence two one sided tests procedure was used for the bioequivalence claim for these analytes, with confidence limits of 80.00% to 125.00% set as criteria for bioequivalence. The intra-subject coefficient of variance (%ISCV) of the reference formulation for C\(_{max}\) of entacapone was > 30%, hence the scaled average procedure was used for the bioequivalence claim for this analyte, with widen confidence limits of 70.84% to 141.24% set as criteria for bioequivalence.

The results indicate that the bioequivalence criteria are met for levodopa and entacapone as the AUC\(_{0-t}\) and C\(_{max}\) values for these analytes lie within acceptance limits. However the AUC\(_{0-t}\) and C\(_{max}\) values for carbidopa lie outside the acceptance limits and do not support the bioequivalence criteria. Hence, the data from this study do not support the claim that the applicant’s test product is bioequivalent to the reference product under fasting conditions.

As Study 1 did not demonstrate bioequivalence for carbidopa, the applicant also submitted the following studies:
Study 2

An open-label, randomised, four-period, two-treatment, two-sequence, replicate, crossover, single-dose bioequivalence study comparing the test product FDC of Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg tablet (Torrent Pharmaceuticals Limited) versus the reference product Stalevo tablets containing Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg (Orion Corporation, Finland) in healthy human volunteers under fasting conditions.

Subjects were administered a single dose of either the test or reference product with 200 ml of water at room temperature after at least an 8-hour overnight fast, according to the randomisation schedule. Blood sampling was performed pre-dose and up to 12 hours post dose in each treatment period. A washout period of 7 days was kept between each consecutive dosing period. The pharmacokinetic results are presented below:

Evaluation of Bioequivalence

Pharmacokinetic parameters (geometric Least Square Mean [LSM] ratios and confidence intervals [CI]) for levodopa, carbidopa and entacapone.

<table>
<thead>
<tr>
<th>PK Parameters</th>
<th>Geometric LSM Ratio (%)</th>
<th>90% CI (Lower limit–Upper limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entacapone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>99.44</td>
<td>88.94 – 111.18</td>
</tr>
<tr>
<td>Two One-sided Tests Procedure:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK Parameters</td>
<td>Geometric LSM Ratio (%)</td>
<td>(Lower limit–Upper limit)</td>
</tr>
<tr>
<td>Levodopa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>99.72</td>
<td>95.68 – 103.92</td>
</tr>
<tr>
<td>Ln(AUC(0–t))</td>
<td>95.80</td>
<td>92.66 – 99.04</td>
</tr>
<tr>
<td>Carbidopa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Cmax)</td>
<td>90.81</td>
<td>83.94 – 98.25</td>
</tr>
<tr>
<td>Ln(AUC(0–t))</td>
<td>93.30</td>
<td>87.05 – 100.01</td>
</tr>
<tr>
<td>Entacapone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(AUC(0–t))</td>
<td>95.67</td>
<td>92.00 – 99.48</td>
</tr>
</tbody>
</table>

AUC_{0-t} area under the plasma concentration-time curve from time zero to t hours

C_{max} maximum plasma concentration

Bioequivalence Discussion and Conclusion

The *Guideline on the Investigation of Bioequivalence* (CPMP/EWP/QWP/1401/98 Rev. 1/Corr*) defines the confidence limits for ratio of geometric means for acceptance of bioequivalence as 80.00% to 125.00% for C_{max} and AUC values.

The intra-subject coefficient of variance (%ISCV) of the reference formulation for C_{max} of levodopa and carbidopa were < 30%, hence the two one-sided tests procedure was used for the bioequivalence claim for these analytes, with confidence limits of 80.00% to 125.00% set as criteria for bioequivalence. The intra-subject coefficient of variance (%ISCV) of the reference formulation for C_{max} of entacapone was > 30%, hence the scaled average procedure was used for the bioequivalence claim for this analyte, with widen confidence limits of 73.61% to 135.84% set as criteria for bioequivalence.

The results indicate that the bioequivalence criteria were met for levodopa, carbidopa and entacapone as the AUC_(0–t) and C_{max} values for these analytes lie within acceptance limits. Hence the data from this study support the claim that the applicant’s test product Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg tablet is bioequivalent to the reference product Stalevo tablets (containing Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg; Orion Corporation, Finland) under fasting conditions.
conditions.

Study 3

An open-label, randomised, four-period, two-treatment, two-sequence, replicate, crossover, single-dose bioequivalence study comparing the test product, FDC of Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg tablet (Torrent Pharmaceuticals Limited) versus the reference product, Stalevo tablets containing Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg (Orion Corporation, Finland) in healthy human volunteers under fasting conditions.

Subjects were administered a single dose of either the test or reference product with 200 ml of water at room temperature after at least an 8-hour overnight fast, according to the randomisation schedule. Blood sampling was performed pre-dose and up to 12 hours post dose in each treatment period. A washout period of 7 days was kept between each consecutive dosing period. The pharmacokinetic results are presented below:

Evaluation of bioequivalence

<table>
<thead>
<tr>
<th>Pharmacokinetic parameter</th>
<th>Geometric Mean Ratio</th>
<th>Confidence Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>104.44</td>
<td>99.94 – 109.14</td>
</tr>
<tr>
<td>AUC_{0-t}</td>
<td>97.33</td>
<td>93.76 – 101.03</td>
</tr>
<tr>
<td>Carbidopa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>106.41</td>
<td>98.55 – 114.90</td>
</tr>
<tr>
<td>AUC_{0-t}</td>
<td>105.47</td>
<td>98.21 – 113.27</td>
</tr>
<tr>
<td>Entacapone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>101.52</td>
<td>91.32 – 112.86</td>
</tr>
<tr>
<td>AUC_{0-t}</td>
<td>102.97</td>
<td>99.94 – 106.10</td>
</tr>
</tbody>
</table>

AUC_{0-t} area under the plasma concentration-time curve from time zero to t hours

C_{max} maximum plasma concentration

Bioequivalence Discussion and Conclusion

The *Guideline on the Investigation of Bioequivalence* (CPMP/EWP/QWP/1401/98 Rev. 1/Corr*) defines the confidence limits for ratio of geometric means for acceptance of bioequivalence as 80.00% to 125.00% for C_{max} and AUC values.

The intra-subject coefficient of variance ($\%\text{ISCV}$) of the reference formulation for the pharmacokinetic parameter of C_{max} was $\leq 30\%$ for levodopa and $>30\%$ for carbidopa and entacapone. Hence, for the bioequivalence claim, the two one-sided tests procedure was used for levodopa and scaled average bioequivalence procedure was used for carbidopa and entacapone for bioequivalence claim.

The results of the study demonstrate that the $\text{AUC}_{(0-t)}$ and C_{max} values for levodopa, carbidopa and entacapone lie within the acceptance limits. Hence the data from this study support the claim that the applicant’s test product (FDC of Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg tablet; Torrent Pharmaceuticals Limited) is bioequivalent to the reference product Stalevo tablets (containing Levodopa 50mg, Carbidopa 12.5mg and Entacapone 200mg; Orion Corporation, Finland) under fasting conditions.

Overall Bioequivalence Conclusion

Based on the results from Study 2 and Study 3, bioequivalence has been demonstrated between the applicant’s test products FDC of Levodopa 200mg, Carbidopa 50mg and Entacapone 200mg tablet and Levodopa 50mg, Carbidopa 12.5mg and Entacapone 200mg tablet and the reference products Stalevo tablets (containing Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg; Orion Corporation, Finland) under fasting conditions.
Finland) and Stalevo tablets (containing Levodopa 50mg, Carbidopa 12.5mg and Entacapone 200mg; Orion Corporation, Finland), respectively, under fasting conditions.

The results of the studies with FDC of Levodopa 200mg, Carbidopa 50mg and Entacapone 200mg tablet and Levodopa 50mg, Carbidopa 12.5mg and Entacapone 200mg tablet, can be extrapolated to other tablet strengths, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg /200 mg and 150 mg/37.5 mg/200 mg, according to conditions in Guideline on the Investigation of Bioequivalence CPMP/EWP/QWP/1401/98 Rev. 1/Corr*, section 4.1.6.

IV.2 Pharmacodynamics

The clinical pharmacology of levodopa, carbidopa and entacapone is well-known. No new pharmacodynamic data were submitted and none are required for applications of this type.

IV.3 Clinical Efficacy

The clinical pharmacology of levodopa, carbidopa and entacapone is well-known. No new efficacy data are presented for these applications and none are required.

IV.4 Clinical Safety

With the exception of the data generated during the bioequivalence studies, no new safety data are presented for these applications and none are required. No new or unexpected safety issues arose during the bioequivalence studies.
IV.5 Risk Management Plan
The MAH has submitted a risk management plan, in accordance with the requirements of Directive 2001/83/EC as amended, describing the pharmacovigilance activities and interventions designed to identify, characterise, prevent or minimise risks relating to Levodopa, Carbidopa and Entacapone Torrent film-coated tablets.

A summary of safety concerns in listed in the table below:

Table 1. Summary of safety concerns

<table>
<thead>
<tr>
<th>Important identified risks</th>
<th>Blood and lymphatic system disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anaemia, thrombocytopenia</td>
</tr>
<tr>
<td></td>
<td>Psychiatric disorders</td>
</tr>
<tr>
<td></td>
<td>Depression, psychoses, suicidal behaviour</td>
</tr>
<tr>
<td></td>
<td>Nervous system disorders</td>
</tr>
<tr>
<td></td>
<td>Dyskinesia*, Parkinsonism aggravated (e.g. bradykinesia), neuroleptic malignant syndrome</td>
</tr>
<tr>
<td></td>
<td>Cardiac disorders</td>
</tr>
<tr>
<td></td>
<td>Ischaemic heart disease events other than myocardial infarction (e.g. angina pectoris), myocardial infarction</td>
</tr>
<tr>
<td></td>
<td>Vascular disorders</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal haemorrhage</td>
</tr>
<tr>
<td></td>
<td>Respiratory, thoracic and mediastinal disorders</td>
</tr>
<tr>
<td></td>
<td>Dyspnoea</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal disorders</td>
</tr>
<tr>
<td></td>
<td>Colitis*</td>
</tr>
<tr>
<td></td>
<td>Hepatobiliary disorders</td>
</tr>
<tr>
<td></td>
<td>Hepatitis with mainly cholestatic features *</td>
</tr>
<tr>
<td></td>
<td>Skin and subcutaneous tissue disorders</td>
</tr>
<tr>
<td></td>
<td>Angioedema</td>
</tr>
<tr>
<td></td>
<td>Musculoskeletal and connective tissue disorders</td>
</tr>
<tr>
<td></td>
<td>Rhabdomyolysis*</td>
</tr>
</tbody>
</table>
Renal and urinary disorders

Urinary tract infection, urinary retention

Impulse control disorders including pathological gambling, increased libido, hypersexuality, compulsive spending or buying, binge eating and compulsive eating

Concomitant administration of antipsychotics with dopamine receptor-blocking properties

Somnolence and episodes of sudden sleep onset due to entacapone in association with levodopa

Abrupt dose reduction of levodopa and/or entacapone

Changes in hepatic, haematopoietic, cardiovascular and renal function during extended therapy

Progressive anorexia, asthenia and weight decrease within a relatively short period of time.

False positive result when a dipstick is used to test for urinary ketone as well as for glycosuria when glucose oxidase methods are used

Use in patients with

- Drug-induced extrapyramidal reactions
- Ischaemic heart disease, severe cardiovascular or pulmonary disease, bronchial asthma, renal or endocrine disease, history of peptic ulcer disease or history of convulsions
- A history of myocardial infarction who have residual atrial nodal or ventricular arrhythmia
- Past or current psychosis
- Wide-angle glaucoma

Use in patients

- Who are taking other medicinal products which may cause orthostatic hypotension
- Who receive entacapone and dopamine agonists (such as bromocriptine), selegiline or amantadine

Use in case of

- Hypersensitivity to the active substances or to any of the excipients
- Severe hepatic impairment
- Narrow-angle glaucoma
- Pheochromocytoma
- Co-administration with non-selective monoamine oxidase (MAO-A and MAO-B) inhibitors (e.g. phenelzine, tranylcypromine)
- Co-administration with a selective MAO-A inhibitor and a selective MAO-B inhibitor
- A previous history of neuroleptic malignant syndrome and/or non-traumatic rhabdomyolysis
Levodopa/Carbidopa/Entacapone Torrent film-coated tablets

No additional risk minimisation activities were required beyond those included in the product information.

IV.6 Clinical Expert Report (Clinical Overview)
A clinical overview written by an appropriately qualified physician has been provided and is a suitable summary of the clinical aspects of the dossier.

IV.7 Summary of Product Characteristics (SmPCs), Patient Information Leaflet (PIL) and Labels
The SmPCs, PIL and labels are acceptable from a clinical perspective. The SmPCs are consistent with those for the innovator products. The PIL is consistent with the details in the SmPCs and in line with the current guidance. The labelling is in line with current guidance.

IV.8 Conclusion
It is recommended that Marketing Authorisations are granted for Levodopa/Carbidopa/Entacapone Torrent film-coated tablets, from a clinical point of view.

V. USER CONSULTATION

The package leaflet has been evaluated via a user consultation study in accordance with the requirements of Articles 59(3) and 61(1) of Directive 2001/83/EC. The language used for the purpose of user testing the pack leaflet was English.

The results show that the package leaflet meets the criteria for readability as set out in the Guideline on the readability of the label and package leaflet of medicinal products for human use.

IV OVERALL CONCLUSION AND BENEFIT/RISK ASSESSMENT AND RECOMMENDATION

QUALITY
The important quality characteristics of Levodopa/Carbidopa/Entacapone Torrent 50 mg/12.5 mg/200 mg, 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg, 150 mg/37.5 mg/200 mg and 200 mg/50 mg/200 mg film-coated tablets are well-defined and controlled. The specifications and batch analytical results indicate consistency from batch to batch. There are no outstanding quality issues that would have a negative impact on the benefit/risk balance.
NON-CLINICAL
No new non-clinical data were submitted. As the pharmacokinetics, pharmacodynamics and toxicology of levodopa, carbidopa and entacapone are well-known, no additional data were required.

No new non-clinical data were submitted and none are required for applications of this type.

EFFICACY
With the exception of the bioequivalence studies, no new data were submitted and none are required for applications of this type.

Bioequivalence has been demonstrated between the applicant’s test products FDC of Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg tablet and Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg tablet and the reference products, Stalevo tablets containing Levodopa 200 mg, Carbidopa 50 mg and Entacapone 200 mg (Orion Corporation, Finland) and Stalevo tablets containing Levodopa 50 mg, Carbidopa 12.5 mg and Entacapone 200 mg (Orion Corporation, Finland), respectively, under fasting conditions.

A biowaiver has been granted to the applicant’s fixed drug combination 75 mg/18.75 mg/200 mg, 100 mg/25 mg/200 mg, 125 mg/31.25 mg/200 mg and 150 mg/37.5 mg/200 mg strength tablets based on data presented, in line with the current bioequivalence guideline.

SAFETY
With the exception of the safety data from the bioequivalence studies, no new data were submitted and none are required for these applications. As the safety profiles of levodopa, carbidopa and entacapone is well known, no additional safety data were required. No new or unexpected safety concerns arose from the bioequivalence studies.

PRODUCT LITERATURE
The SmPCs and PIL are satisfactory, and consistent with those for the cross-reference products. The labelling complies with statutory requirements and is satisfactory.

BENEFIT/RISK ASSESSMENT
The quality of the products is acceptable, and no new non-clinical or clinical safety concerns have been identified. Extensive clinical experience with levodopa, carbidopa and entacapone is considered to have demonstrated the therapeutic value of the compounds. The benefit/risk balance is therefore considered to be positive.

RECOMMENDATION
The grant of Marketing Authorisations is recommended.
Module 6

STEPS TAKEN AFTER THE INITIAL PROCEDURE - SUMMARY

<table>
<thead>
<tr>
<th>Date submitted</th>
<th>Application type</th>
<th>Scope</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>