Public Assessment Report

Ondansetron 4mg Orodispersible Tablet
Ondansetron 8mg Orodispersible Tablet

Ondansetron

PL 00289/0685
PL 00289/0686
PL 00289/0687
PL 00289/0688

TEVA UK Ltd

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lay Summary</td>
<td>2</td>
</tr>
<tr>
<td>Scientific Discussion</td>
<td>3</td>
</tr>
<tr>
<td>Overall Conclusion And Risk Benefit/Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Steps Taken During Assessment</td>
<td>11</td>
</tr>
<tr>
<td>Summary of Product Characteristics</td>
<td>13</td>
</tr>
<tr>
<td>Labels and Leaflet</td>
<td>28</td>
</tr>
</tbody>
</table>
Lay Summary

The MHRA today granted TEVA UK Limited Market Authorisations (licences) for the medicinal products Ondansetron 4mg and 8mg Orodispersible Tablets. This is a prescription only medicine (POM) for the management of nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy, and for the prevention of post-operative nausea and vomiting.

These products contain the active ingredient ondansetron. No new or unexpected safety concerns arose from these applications and it was therefore judged that the benefits of taking Ondansetron 4mg or 8mg Orodispersible Tablets outweighs the risks hence Marketing Authorisations were granted.
Scientific Discussion

INTRODUCTION

This Public Assessment report is based on the assessment report for National applications for Ondansetron 4mg Orodispersible Tablets (PL 00289/0685) and a duplicate application (PL 00289/0687) and Ondansetron 8mg Orodispersible Tablets (PL 00289/0686) and a duplicate application (PL 00289/0688). Market Authorisations were granted in the UK on 13th August 2007.

The applications claimed to be a generic medical product under 10.1 of Directive 2001/83/EC of Zofran 4mg and 8mg Orodispersible Tablets first authorised in Denmark in 1990. The UK marketed products are Zofran Melt 4mg and 8mg Orodispersible Tablets (PL 10949/0263-0264) authorised to Glaxo Wellcome UK Ltd, first licensed in the UK on 3rd April 1998.

These products contain the active ingredient ondansetron which is indicated for the management of nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy, and for the prevention of post-operative nausea and vomiting. Ondansetron is a potent, highly selective 5HT₃ receptor-antagonist.

The precise mode of action of ondansetron in the control of nausea and vomiting is not known. Chemotherapeutic agents and radiotherapy may cause release of 5HT in the small intestine initiating a vomiting reflex by activating vagal afferents via 5HT₃ receptors. Ondansetron blocks the initiation of this reflex. Activation of vagal afferents may also cause a release of 5HT in the area postrema, located on the floor of the fourth ventricle, and this may also promote emesis through a central mechanism. Thus, the effect of ondansetron in the management of the nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy is probably due to antagonism of 5HT₃ receptors on neurones located both in the peripheral and central nervous system.

These applications were submitted at the same time and both depend on two bioequivalence studies which compared the products with the reference products Zofran® Melt 8 mg, orodispersible tablets & Zofran® 8 mg, film-coated tablets.

PHARMACEUTICAL ASSESSMENT

DRUG SUBSTANCE

Ondansetron (base) is a non-hygroscopic white to off-white powder sparingly soluble in dichloromethane, soluble in ethanol and methanol, slightly soluble in acetonitrile and insoluble in water. It is used as the racemate.
Nomenclature

rINN: Ondansetron

\((\pm)-1,2,3,9\text{-Tetrahydro-9-methyl-3-}[(2\text{-methyl-1H-imidazol-1-yl})\text{methyl}]-4H\text{-carbazole-4-}
\text{one}\)

4-H-carbazol-4-one, 1,2,3,9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]

\((\pm)-2,3\text{-Dihydro-9-methyl-3-}[(2\text{-methylimidazol-1-yl})\text{methyl}]-\text{carbazol-4(1H)-one}\)

Structure

\[
\text{C}_{18}\text{H}_{19}\text{N}_{3}0 \quad \text{MW: 293.4} \quad \text{CAS Number: 99614-02-5}
\]

The active substance has a European Drug Master File and an appropriate letter of access was provided.

An appropriate specification was provided by the active substance manufacturer and satisfactory batch data to demonstrate that ondansetron met the specification.

Analytical methods have been appropriately validated and are satisfactory for ensuring compliance with the relevant specifications.

Active ondansetron is stored in appropriate packaging. The specifications and typical analytical test reports are provided and are satisfactory.

Satisfactory certificates of analysis have been provided for working standards used by the active substance manufacturer and finished product manufacturer during validation studies.

Appropriate stability data have been generated supporting a retest period of 24 months, with no specific storage instructions.

DRUG PRODUCT

Composition of the Drug Product

- Mannitol 60
- Basic butylated methacrylate copolymer (Eudragit E100)
- Precipitated silica, hydrated
- Strawberry flavour (maltodextrin, arabic gum, lactose, triethyl citrate)
- Aspartame
- Crospovidone
- Magnesium stearate

All excipients included in the tablets comply with relevant Ph Eur monographs, except for the precipitated silica hydrated and the strawberry flavour that are controlled to in-house specifications. Satisfactory certificates of analysis have been provided for all excipients. Excipients have been declared free of TSE risk.
Dissolution and impurity profiles
Dissolution and impurity profiles for both strengths of drug product were found to be similar to those for the reference products.

Manufacture
A description and flow-chart of the manufacturing method has been provided.

In-process controls are appropriate considering the nature of the product and the method of manufacture. Process validation has been carried out on batches of each strength. The results are satisfactory.

Finished product specification
The finished product specification is satisfactory. Acceptance limits have been justified with respect to conventional pharmaceutical requirements and, where appropriate, safety. Test methods have been described and have been adequately validated, as appropriate. Batch data have been provided and comply with the release specification. Certificates of analysis have been provided for any working standards used.

Container Closure System
The tablets are presented in aluminium – aluminium / paper (peel) blister packs. The pack is a peel-to-open rigid strip formed from a laminate of aluminium foil and plastic films sealed to a paper-based laminate of aluminium foil.

The 4mg tablets will be presented in packs containing 2, 4, 6, 10, 20 and 30 tablets, with hospital packs of 10, 50, 10x6, 10x10 and 500 tablets. The 8mg tablets will be available in packs containing 2, 4, 6, 9, 10 and 30 tablets, with hospital packs of 10, 50, 10x6, 10x10 and 500 tablets.

It has been stated that the packaging components comply with Directive 90/128/EEC, as amended with respect to their suitability for contact with food.

Stability
Finished product stability studies have been conducted in accordance with current guidelines. Based on the results, a shelf-life of 3 years has been set, which is satisfactory. The storage conditions are “Store in the original package”.

ASSESSOR’S OVERALL CONCLUSIONS ON QUALITY AND ADVICE
A Marketing Authorisation was granted.
PRECLINICAL ASSESSMENT

No new preclinical data have been supplied with these applications and none are required for an application of this type.
MEDICAL ASSESSMENT

Bioequivalence

The applicant submitted a comparative pharmacokinetic study. The objective of this study was to evaluate the comparative bioavailability between Ondansetron Tablets 8 mg Flashtab (Teva Pharmaceutical industries Ltd., Israel), Zofran™ Melt 8 mg (Glaxo Wellcome, UK Ltd) and Zofran™ tablets 8 mg (Glaxo Wellcome, UK Ltd), in 24 healthy male subjects under fasting conditions. This study compared the rate and extent of absorption of Ondansetron 8 mg Orodispersible Tablets (test, Treatment A) versus Zofran® Melt 8 mg orodispersible tablets (reference 1, Treatment B) and Zofran® 8 mg tablets (reference 2, Treatment C), marketed in the UK.

This was a blinded, single dose, randomized, 3-period, 6-sequence, 3-treatment, crossover study designed to evaluate the comparative bioavailability of three formulations of ondansetron. Subjects were randomly assigned to one of the six dosing sequences ABC, ACB, BAC, BCA, CAB, or CBA. Concentrations of ondansetron were measured from the plasma samples collected over a 24-hour interval after dosing in each period. Pharmacokinetic parameters: AUC_t, AUC_{inf}, C_{max}, T_{max}, K_{el}, and T_{1/2}, were estimated based on ondansetron plasma levels for each subject that was assayed within each period of the study. Safety data were collected for each subject throughout the study by recording vital signs and reported adverse events.

Descriptive statistics for both test and reference products, were calculated for all pharmacokinetic parameters across all subjects analyzed. Analysis of Variance (ANOVA) was also carried out on the natural log-transformed AUC_t, AUC_{inf} and C_{max} data and on the untransformed T_{max}, K_{el} and T_{1/2} data. The following reported results are included: Geometric means of AUCs and C_{max} for both test and reference products. Ratios of geometric means of test versus reference products for AUCs and C_{max}, 90% confidence intervals of the above ratios.

The main pharmacokinetic findings are summarised in the tables below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric Means</th>
<th>Ratio of Geometric Means (%)</th>
<th>90% Confidence Interval (%)</th>
<th>Intra-Subject (CV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arithmetic Means (CV%)</td>
<td>Treatments</td>
<td>Treatments</td>
<td></td>
</tr>
<tr>
<td>AUC<sub>0-t</sub></td>
<td>198.468 (28)</td>
<td>216.948 (27)</td>
<td>91.48</td>
<td>84.45 – 99.10</td>
</tr>
<tr>
<td>AUC<sub>inf</sub></td>
<td>205.965 (29)</td>
<td>225.439 (28)</td>
<td>91.36</td>
<td>84.21 – 99.12</td>
</tr>
<tr>
<td>C<sub>max</sub></td>
<td>27.116 (19)</td>
<td>30.244 (25)</td>
<td>89.66</td>
<td>81.68 – 98.42</td>
</tr>
<tr>
<td>T<sub>max</sub></td>
<td>1.92 (43)</td>
<td>1.85 (44)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K<sub>el</sub></td>
<td>0.1456 (15)</td>
<td>0.1453 (18)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T<sub>1/2</sub></td>
<td>4.86 (14)</td>
<td>4.91 (16)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data Corrected for Measured Drug Content

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Arithmetic Means (CV%)</th>
<th>Treatments</th>
<th>Treatments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>t</sub></td>
<td>195.728</td>
<td>212.903</td>
<td>91.93</td>
<td>84.87 – 99.59</td>
<td>-</td>
</tr>
<tr>
<td>AUC<sub>inf</sub></td>
<td>203.121</td>
<td>221.236</td>
<td>91.81</td>
<td>84.62 – 99.61</td>
<td>-</td>
</tr>
<tr>
<td>C<sub>max</sub></td>
<td>26.742</td>
<td>29.680</td>
<td>90.10</td>
<td>82.08 – 98.90</td>
<td>-</td>
</tr>
</tbody>
</table>
Treatment A vs. Treatment C Contrast (N=24)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric Means</th>
<th>Ratio of Geometric Means (%)</th>
<th>90% Confidence Interval (%)</th>
<th>Intra-Subject (CV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arithmetic Means (CV%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC_{0-t} (ng*h/ml)</td>
<td>198.468 (28)</td>
<td>197.334 (32)</td>
<td>100.57</td>
<td>92.84 – 108.95</td>
</tr>
<tr>
<td>AUC_{inf} (ng*h/ml)</td>
<td>205.965 (29)</td>
<td>205.169 (32)</td>
<td>100.90</td>
<td>91.92 – 110.76</td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>27.116 (19)</td>
<td>26.874 (21)</td>
<td>100.57</td>
<td>92.84 – 108.95</td>
</tr>
<tr>
<td>T_{max}*(h)</td>
<td>1.92 (43)</td>
<td>2.04 (29)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K_{elId} (1/h)</td>
<td>0.1456 (15)</td>
<td>0.1461 (15)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T_{1/2} (h)</td>
<td>4.86 (14)</td>
<td>4.86 (16)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data Corrected for Measured Drug Content

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric Means</th>
<th>Ratio of Geometric Means (%)</th>
<th>90% Confidence Interval (%)</th>
<th>Intra-Subject (CV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{t} (ng*h/ml)</td>
<td>195.728</td>
<td>198.525</td>
<td>98.59</td>
<td>91.01 – 106.80</td>
</tr>
<tr>
<td>AUC_{inf} (ng*h/ml)</td>
<td>203.121</td>
<td>206.407</td>
<td>98.41</td>
<td>90.70 – 106.77</td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>26.742</td>
<td>27.036</td>
<td>98.91</td>
<td>90.11 – 108.57</td>
</tr>
</tbody>
</table>

* Presented as arithmetic mean (CV%) only.

There were a total 8 adverse events involving 3 subjects in the study. These included constipation (2), headache (2), common cold (2), cough (1) and rhinorrhea (1). All were mild in severity. None of the adverse events had a significant impact on the safety of the subjects or on the integrity of the study results. No serious adverse events were reported during the conduct of this study.

The 90% confidence intervals of the relative mean AUC_{t} and C_{max} of the test to reference products for measured data and data adjusted for measured drug content were within the 80-125% range. Therefore, Teva Pharmaceutical Industries Ltd test drug of Ondansetron Tablets 8mg Flashtab, exhibited equivalent rate and extent of absorption to Zofran™ Melt 8mg and to Zofran™ tablets 8mg, in healthy volunteers, after a single oral-dose, under fasting conditions and therefore, they are bioequivalent drug products.

Assessor’s Comment

The study design, analytical methodology and statistical evaluation of the presented bioequivalent trial are in accordance with the recommendations of the relevant CPMP guidelines: ‘Investigation of bioavailability and bioequivalence.’ Therefore, the bioequivalence of the generic product with the referenced innovator product, marketed in UK by GlaxoSmithKline has been proven.

No new efficacy data are presented for this application and none is required. However the applicant has provided a critical review of clinical trials published in the literature regarding the efficacy and safety of ondansetron.

UKPAR TEVA UK Ltd, Ondansetron 4mg and 8mg Orodispersible Tablets 8
No new safety data are provided or needed. But the applicant has provided a brief safety review of ondanstron. No new safety issues have been identified.

The indications, dose and dose schedule are in line with those of the reference product.

A satisfactory Clinical Expert Report has been submitted with appropriate CV.

Summary of Product Characteristics, Patient Information Leaflet and Labelling

Minor amendments were made to the Summary of Product Characteristics to bring it in line with the reference product’s Summary of Product Characteristics. Subsequent minor changes to the Patient Information Leaflet and packaging were also made.

Assessor’s Overall Conclusion

A Marketing Authorisation was granted.
Overall Conclusion and Risk/Benefit Analysis

Quality
The important quality characteristics of Ondansetron 4mg and 8mg Orodispersible Tablets are well defined and controlled. The specifications and batch analytical results indicate consistency from batch to batch. There are no outstanding quality issues that would have a negative impact on the benefit/risk balance.

Pre-Clinical
No new preclinical data have been supplied with these applications and none are required for an application of this type.

Clinical
Sufficient clinical information has been submitted. When used as indicated, ondansetron has a favourable benefit-to-risk ratio. The hazard associated with ondansetron appears to be low and acceptable when considered in relation to its therapeutic benefits.

Risk/Benefit Analysis
The quality of the product is acceptable and no new preclinical or clinical safety concerns have been identified. The bioequivalence study supports the claim that the applicant’s products is a generic medical product of Zofran. The risk benefit is, therefore, considered to be positive.
Steps Taken During Assessment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The MHRA received the application on 4th May 2004.</td>
</tr>
<tr>
<td>2</td>
<td>Following standard checks and communication with the applicant the MHRA considered the application valid on 18th August 2004.</td>
</tr>
<tr>
<td>3</td>
<td>Following assessment of the application the MHRA requested further information from the applicant regarding the quality assessment on 15th March 2005, 27th June 2006 and 24th April 2007 and on the medical assessment on 1st October 2004</td>
</tr>
<tr>
<td>4</td>
<td>The applicant provided further information in regard to the quality assessment on 14th February 2006, 30th November 2006, 19th March 2007 and 17th May 2007 and on the medical assessment on 14th February 2006.</td>
</tr>
<tr>
<td>5</td>
<td>The application was determined on 13th August 2007.</td>
</tr>
</tbody>
</table>
Steps Taken after Assessment

Not applicable.
SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT
Ondansetron 4 mg Orodispersible Tablets

2 QUALITATIVE AND QUANTITATIVE COMPOSITION
Each tablet contains 4 mg of ondansetron base.
Each tablet contains lactose and aspartame.
For a full list of excipients, see section 6.1.

3 PHARMACEUTICAL FORM
Orodispersible tablet.
White to off white, round, flat bevelled edge tablet. One side of the tablet debossed with the number “93”. The other side of the tablet debossed with the number “7301”.

4 CLINICAL PARTICULARS

4.1 Therapeutic indications
The management of nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy, and for the prevention of post-operative nausea and vomiting.

4.2 Posology and method of administration
Place the tablet on top of the tongue, where it will disperse within seconds, then swallow.

Chemotherapy and radiotherapy induced nausea and vomiting

Adults
The emetogenic potential of cancer treatment varies according to the doses and combinations of chemotherapy and radiotherapy regimens used. The route of administration and dose of ondansetron should be flexible and selected as shown below.

Emetogenic chemotherapy and radiotherapy
Ondansetron can be given either by rectal, oral, intravenous or intramuscular administration.

For oral administration: 8 mg 1-2 hours before treatment, followed by 8 mg 12 hours later.
To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment. The recommended dose for oral administration is 8 mg twice daily.

Highly emetogenic chemotherapy (e.g. high dose cisplatin)
Ondansetron can be given either by rectal, intravenous or intramuscular administration. To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment.

The recommended dose for oral administration is 8 mg twice daily.

Children
Ondansetron may be administered as a single intravenous dose of 5 mg/m\(^2\) immediately before chemotherapy, followed by 4 mg orally twelve hours later. 4 mg orally twice daily should be continued for up to 5 days after a course of treatment.

Elderly
Ondansetron is well tolerated by patients over 65 years and no alteration of dosage, dosing frequency or route of administration are required.

Post-operative nausea and vomiting (PONV)

Adults

For the prevention of PONV
Ondansetron may be administered either orally (as orodispersible tablets, tablets or syrup) or by intravenous or intramuscular injection.

For oral administration: 16 mg one hour prior to anaesthesia. Alternatively, 8 mg one hour prior to anaesthesia followed by two further doses of 8 mg at eight hourly intervals.

For the treatment of established PONV
Intravenous or intramuscular administration is recommended.

Children (aged 2 years and over)

For the prevention and treatment of PONV
Slow intravenous injection is recommended.

Elderly
There is limited experience in the use of ondansetron in the prevention and treatment of PONV in the elderly, however ondansetron is well tolerated in patients over 65 years receiving chemotherapy.

For both indications

Patients with renal impairment
No alterations of daily dosage or frequency of dosing, or route of administration are required.

Patients with hepatic impairment
Clearance of ondansetron is significantly reduced and serum half life significantly prolonged in subjects with moderate or severe impairment of hepatic function. In such patients a total daily dose of 8 mg should not be exceeded.

Patients with poor sparteine/debrisoquine metabolism
The elimination half-life of ondansetron is not altered in subjects classified as poor metabolisers of sparteine and debrisoquine. Consequently in such patients repeat dosing will give ondansetron exposure levels no different from those of the general population. No alteration of daily dosage or frequency of dosing are required.

4.3 **Contraindications**
Hypersensitivity to the active substance or to any of the excipients.

4.4 **Special warnings and precautions for use**
Hypersensitivity reactions have been reported in patients who have exhibited hypersensitivity to other selective 5HT\textsubscript{3} receptor antagonists.
As ondansetron is known to increase large bowel transit time, patients with signs of subacute intestinal obstruction should be monitored following administration.
Caution in patients with phenylketonuria.
Ondansetron Orodispersible Tablets contain lactose and should therefore not be used in patients with rare genetic disorders such as galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.

4.5 **Interaction with other medicinal products and other forms of interaction**
There is no evidence that ondansetron either induces or inhibits the metabolism of other substances commonly co-administered with it. Specific studies have shown that there are no pharmacokinetic interactions when ondansetron is administered with alcohol, temazepam, furosemide, tramadol or propofol.
Ondansetron is metabolised by multiple hepatic cytochrome P-450 enzymes: CYP3A4, CYP2D6 and CYP1A2. Due to the multiplicity of metabolic enzymes capable of metabolising ondansetron, enzyme inhibition or reduced activity of one enzyme (e.g. CYP2D6 genetic deficiency) is normally compensated by other enzymes and should result in little or no significant change in overall ondansetron clearance or dose requirement.
Phenytoin, carbamazepine and rifampicin: In patients treated with potent inducers of CYP3A4 (i.e. phenytoin, carbamazepine, and rifampicin), the oral clearance of ondansetron was increased and ondansetron blood concentrations were decreased.
Tramadol: Data from small studies indicate that ondansetron may reduce the analgesic effect of tramadol.

4.6 **Pregnancy and lactation**
The safety of ondansetron for use in human pregnancy has not been established. Evaluation of experimental animal studies does not indicate direct
or indirect harmful effects with respect to the development of the embryo, or
the fetus, the course of gestation and peri- and post-natal development.
However, as animal studies are not always predictive of human response the
use of ondansetron in pregnancy is not recommended.
Tests have shown that ondansetron passes into the milk of lactating animals. It
is therefore recommended that mothers receiving ondansetron should not
breast-feed their babies.

4.7 Effects on ability to drive and use machines
In psychomotor testing, ondansetron does not impair performance or cause
sedation.

4.8 Undesirable effects
Adverse events are listed below by system organ class and frequency.
Frequencies are defined as: very common (≥1/10), common (≥1/100 and
<1/10), uncommon (≥1/1000 and <1/100), rare (≥1/10,000 and <1/1000) and
very rare (<1/10,000) including isolated reports.
Very common, common and uncommon events were generally determined
from clinical trial data. The incidence in placebo was taken into account. Rare
and very rare events were generally determined from post-marketing
spontaneous data.
The following frequencies are estimated at the standard recommended doses
of ondansetron according to indication and formulation.

Immune system disorders
Rare: Immediate hypersensitivity reactions, sometimes severe, including
anaphylaxis.

Nervous system disorders
Very common: Headache.
Uncommon: Seizures, movement disorders including extrapyramidal
reactions such as dystonic reactions, oculogyric crisis and dyskinesia have
been observed without definitive evidence of persistent clinical sequelae.
Rare: Dizziness during i.v. administration, which in most cases is prevented
or resolved by lengthening the infusion period.

Eye disorders
Rare: Transient visual disturbances (e.g. blurred vision) during i.v.
administration.
Very rare: Transient blindness predominantly during intravenous
administration
The majority of the blindness cases reported resolved within 20 minutes. Most
patients had received chemotherapeutic agents, which included cisplatin.
Some cases of transient blindness were reported as cortical in origin.

Cardiac disorders
Uncommon: Arrhythmias, chest pain with or without ST segment
depression, bradycardia.
Vascular disorders

Common: Sensation of warmth or flushing.

Uncommon: Hypotension.

Respiratory, thoracic and mediastinal disorders

Uncommon: Hiccups.

Gastrointestinal disorders

Common: Constipation.

Hepatobiliary disorders

Uncommon: Asymptomatic increases in liver function tests*.

*These events were observed commonly in patients receiving chemotherapy with cisplatin.

4.9 Overdose

Little is known at present about overdosage with ondansetron, however, a limited number of patients received overdoses. Manifestations that have been reported include visual disturbances, severe constipation, hypotension and a vasovagal episode with transient second degree AV block. In all instances, the events resolved completely. There is no specific antidote for ondansetron, therefore in all cases of suspected overdose, symptomatic and supportive therapy should be given as appropriate.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Alimentary tract and metabolism – Antiemetics and antinauseants – Serotonin (5HT₃) antagonists.

ATC code A04A A01.

Ondansetron is a potent, highly selective 5HT₃ receptor-antagonist. Its precise mode of action in the control of nausea and vomiting is not known. Chemotherapeutic agents and radiotherapy may cause release of 5HT in the small intestine initiating a vomiting reflex by activating vagal afferents via 5HT₃ receptors. Ondansetron blocks the initiation of this reflex. Activation of vagal afferents may also cause a release of 5HT in the area postrema, located on the floor of the fourth ventricle, and this may also promote emesis through a central mechanism. Thus, the effect of ondansetron in the management of the nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy is probably due to antagonism of 5HT₃ receptors on neurones located both in the peripheral and central nervous system. The mechanisms of action in post-operative nausea and vomiting are not known but there may be common pathways with cytotoxic induced nausea and vomiting. Ondansetron does not alter plasma prolactin concentrations. The role of ondansetron in opiate-induced emesis is not yet established.
5.2 Pharmacokinetic properties
Following oral administration of ondansetron, absorption is rapid with maximum peak plasma concentrations of about 30ng/ml being attained and achieved in approximately 1.5 hours after an 8 mg dose. The disposition of ondansetron following oral, intravenous and intramuscular dosing is similar with a terminal elimination half-life of approximately 3 hours and a steady-state volume of distribution of about 140L. Ondansetron is not highly protein bound (70-76%) and is cleared from the systemic circulation predominantly by hepatic metabolism through multiple enzymatic pathways. Less than 5% of the absorbed dose is excreted unchanged in the urine. The absence of the enzyme CYP2D6 (the debrisoquine polymorphism) has no effect on the pharmacokinetics of ondansetron. The pharmacokinetic properties of ondansetron are unchanged on repeat dosing.

Studies in healthy elderly volunteers have shown a slight but clinically insignificant, age-related increases in both oral bioavailability (65%) and half-life (5h) of ondansetron. Gender differences were shown in the disposition of ondansetron, with females having a greater rate and extent of absorption following an oral dose and reduced systemic clearance and volume of distribution (adjusted for weight).

In a study of 21 paediatric patients aged between 3 and 12 years undergoing elective surgery with general anaesthesia, the absolute values for both the clearance and volume of distribution of ondansetron following a single intravenous dose of 2 mg (3-7 years old) or 4 mg (8-12 years old) were reduced. The magnitude of the change was age-related, with clearance falling from about 300 ml/min at 12 years of age to 100 ml/min at 3 years. Volume of distribution fell from about 75L at 12 years to 17L at 3 years. Use of weight-based dosing (0.1 mg/kg up to 4 mg maximum) compensates for these changes and is effective in normalising systemic exposure in paediatric patients.

In patients with renal impairment (creatinine clearance >15 ml/min), systemic clearance and volume of distribution are reduced, resulting in a slight, but clinically insignificant increase in elimination half-life (5.4h). A study in patients with severe renal impairment who required regular haemodialysis (studied between dialyses) showed ondansetron's pharmacokinetics to be essentially unchanged.

In patients with severe hepatic impairment, systemic clearance is markedly reduced with prolonged elimination half-lives (15-32h) and an oral bioavailability approaching 100% because of reduced pre-systemic metabolism.

5.3 Preclinical safety data
No additional data of relevance.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients
Mannitol
Basic butylated methacrylate copolymer (Eudragit E100)
Precipitated silica, hydrated
Strawberry flavour (maltodextrin, arabic gum, lactose, triethyl citrate)
Aspartame
Crospovidone
Magnesium stearate

6.2 Incompatibilities
Not applicable.

6.3 Shelf life
3 years

6.4 Special precautions for storage
Store in the original package.

6.5 Nature and contents of container
Aluminium – Aluminium / Paper (Peel) blisters containing 2, 4, 6, 10, 20 & 30 orodispersible tablets. Hospital packs of 10, 50, 10x6, 10x10 & 500 orodispersible tablets.

6.6 Special precautions for disposal
Do not attempt to push Ondansetron Orodispersible Tablets through the lidding foil.
Peel back the lidding foil of one blister and gently remove the tablet.
Place the tablet on top of the tongue, where it will disperse within seconds then swallow.

7 MARKETING AUTHORISATION HOLDER
Teva UK Ltd
Brampton Road, Hampden Park
Eastbourne, BN22 9AG
England

8 MARKETING AUTHORISATION NUMBER(S)
PL 00289/0685

9 DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
13/08/2007

10 DATE OF REVISION OF THE TEXT
13/08/2007
SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT
Ondansetron 8 mg Orodispersible Tablets

2 QUALITATIVE AND QUANTITATIVE COMPOSITION
Each tablet contains 8 mg of ondansetron base.
Each tablet contains lactose and aspartame.

For a full list of excipients, see section 6.1.

3 PHARMACEUTICAL FORM
Orodispersible tablet.
White to off white, round, flat bevelled edge tablet. One side of the tablet debossed with the number “93”. The other side of the tablet debossed with the number “7302”.

4 CLINICAL PARTICULARS

4.1 Therapeutic indications
The management of nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy, and for the prevention of post-operative nausea and vomiting.

4.2 Posology and method of administration
Place the tablet on top of the tongue, where it will disperse within seconds, then swallow.

Chemotherapy and radiotherapy induced nausea and vomiting
Adults
The emetogenic potential of cancer treatment varies according to the doses and combinations of chemotherapy and radiotherapy regimens used. The route of administration and dose of ondansetron should be flexible and selected as shown below.

Emetogenic chemotherapy and radiotherapy
Ondansetron can be given either by rectal, oral, intravenous or intramuscular administration.
For oral administration: 8 mg 1-2 hours before treatment, followed by 8 mg 12 hours later.

To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment.
The recommended dose for oral administration is 8 mg twice daily.

Highly emetogenic chemotherapy (e.g. high dose cisplatin)

Ondansetron can be given either by rectal, intravenous or intramuscular administration. To protect against delayed or prolonged emesis after the first 24 hours, oral or rectal treatment with ondansetron should be continued for up to 5 days after a course of treatment.

The recommended dose for oral administration is 8 mg twice daily.

Children

Ondansetron may be administered as a single intravenous dose of 5 mg/m² immediately before chemotherapy, followed by 4 mg orally twelve hours later. 4 mg orally twice daily should be continued for up to 5 days after a course of treatment.

Elderly

Ondansetron is well tolerated by patients over 65 years and no alteration of dosage, dosing frequency or route of administration are required.

Post-operative nausea and vomiting (PONV)

Adults

For the prevention of PONV

Ondansetron may be administered either orally (as orodispersible tablets, tablets or syrup) or by intravenous or intramuscular injection.

For oral administration: 16 mg one hour prior to anaesthesia. Alternatively, 8 mg one hour prior to anaesthesia followed by two further doses of 8 mg at eight hourly intervals.

For the treatment of established PONV

Intravenous or intramuscular administration is recommended.

Children (aged 2 years and over)

For the prevention and treatment of PONV

Slow intravenous injection is recommended.

Elderly

There is limited experience in the use of ondansetron in the prevention and treatment of PONV in the elderly, however ondansetron is well tolerated in patients over 65 years receiving chemotherapy.

For both indications

Patients with renal impairment

No alteration of daily dosage or frequency of dosing, or route of administration are required.
Patients with hepatic impairment
Clearance of ondansetron is significantly reduced and serum half life significantly prolonged in subjects with moderate or severe impairment of hepatic function. In such patients a total daily dose of 8 mg should not be exceeded.

Patients with poor sparteine/debrisoquine metabolism
The elimination half-life of ondansetron is not altered in subjects classified as poor metabolisers of sparteine and debrisoquine. Consequently in such patients repeat dosing will give ondansetron exposure levels no different from those of the general population. No alteration of daily dosage or frequency of dosing are required.

4.3 Contraindications
Hypersensitivity to the active substance or to any of the excipients.

4.4 Special warnings and precautions for use
Hypersensitivity reactions have been reported in patients who have exhibited hypersensitivity to other selective 5HT₃ receptor antagonists.

As ondansetron is known to increase large bowel transit time, patients with signs of subacute intestinal obstruction should be monitored following administration.

Caution in patients with phenylketonuria.

Ondansetron Orodispersible Tablets contain lactose and should therefore not be used in patients with rare genetic disorders such as galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.

4.5 Interaction with other medicinal products and other forms of interaction
There is no evidence that ondansetron either induces or inhibits the metabolism of other substances commonly co-administered with it. Specific studies have shown that there are no pharmacokinetic interactions when ondansetron is administered with alcohol, temazepam, furosemide, tramadol or propofol.

Ondansetron is metabolised by multiple hepatic cytochrome P-450 enzymes: CYP3A4, CYP2D6 and CYP1A2. Due to the multiplicity of metabolic enzymes capable of metabolising ondansetron, enzyme inhibition or reduced activity of one enzyme (e.g. CYP2D6 genetic deficiency) is normally compensated by other enzymes and should result in little or no significant change in overall ondansetron clearance or dose requirement.

Phenytoin, carbamazepine and rifampicin: In patients treated with potent inducers of CYP3A4 (i.e. phenytoin, carbamazepine, and rifampicin), the oral
clearance of ondansetron was increased and ondansetron blood concentrations were decreased.

Tramadol: Data from small studies indicate that ondansetron may reduce the analgesic effect of tramadol.

4.6 Pregnancy and lactation

The safety of ondansetron for use in human pregnancy has not been established. Evaluation of experimental animal studies does not indicate direct or indirect harmful effects with respect to the development of the embryo, or the fetus, the course of gestation and peri- and post-natal development. However, as animal studies are not always predictive of human response the use of ondansetron in pregnancy is not recommended. Tests have shown that ondansetron passes into the milk of lactating animals. It is therefore recommended that mothers receiving ondansetron should not breast-feed their babies.

4.7 Effects on ability to drive and use machines

In psychomotor testing ondansetron does not impair performance or cause sedation.

4.8 Undesirable effects

Adverse events are listed below by system organ class and frequency. Frequencies are defined as: very common ($\geq 1/10$), common ($\geq 1/100$ and $<1/10$), uncommon ($\geq 1/1000$ and $<1/100$), rare ($\geq 1/10,000$ and $<1/1000$) and very rare ($<1/10,000$) including isolated reports.

Very common, common and uncommon events were generally determined from clinical trial data. The incidence in placebo was taken into account. Rare and very rare events were generally determined from post-marketing spontaneous data.

The following frequencies are estimated at the standard recommended doses of ondansetron according to indication and formulation.

Immune system disorders

Rare: Immediate hypersensitivity reactions, sometimes severe, including anaphylaxis.

Nervous system disorders

Very common: Headache.

Uncommon: Seizures, movement disorders including extrapyramidal reactions such as dystonic reactions, oculogyric crisis and dyskinesia have been observed without definitive evidence of persistent clinical sequelae.

Rare: Dizziness during i.v. administration, which in most cases is prevented or resolved by lengthening the infusion period.

Eye disorders
Rare: Transient visual disturbances (eg. blurred vision) during i.v. administration.

Very rare: Transient blindness predominantly during intravenous administration

The majority of the blindness cases reported resolved within 20 minutes. Most patients had received chemotherapeutic agents, which included cisplatin. Some cases of transient blindness were reported as cortical in origin.

Cardiac disorders
Uncommon: Arrhythmias, chest pain with or without ST segment depression, bradycardia.

Vascular disorders
Common: Sensation of warmth or flushing.
Uncommon: Hypotension.

Respiratory, thoracic and mediastinal disorders
Uncommon: Hiccups.

Gastrointestinal disorders
Common: Constipation.

Hepatobiliary disorders
Uncommon: Asymptomatic increases in liver function tests*.

*These events were observed commonly in patients receiving chemotherapy with cisplatin.

4.9 Overdose
Little is known at present about overdosage with ondansetron, however, a limited number of patients received overdoses. Manifestations that have been reported include visual disturbances, severe constipation, hypotension and a vasovagal episode with transient second degree AV block. In all instances, the events resolved completely. There is no specific antidote for ondansetron, therefore in all cases of suspected overdose, symptomatic and supportive therapy should be given as appropriate.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacothe reapeutic group: Alimentary tract and metabolism – Antiemetics and antinauseants – Serotonin (5HT₃) antagonists.
ATC code A04A A01.

Ondansetron is a potent, highly selective 5HT₃ receptor-antagonist. Its precise mode of action in the control of nausea and vomiting is not known. Chemotherapeutic agents and radiotherapy may cause release of 5HT in the small intestine initiating a vomiting reflex by activating vagal afferents via 5HT₃ receptors. Ondansetron blocks the initiation of this reflex. Activation of
vagal afferents may also cause a release of 5HT in the area postrema, located on the floor of the fourth ventricle, and this may also promote emesis through a central mechanism. Thus, the effect of ondansetron in the management of the nausea and vomiting induced by cytotoxic chemotherapy and radiotherapy is probably due to antagonism of 5HT\textsubscript{3} receptors on neurones located both in the peripheral and central nervous system. The mechanisms of action in post-operative nausea and vomiting are not known but there may be common pathways with cytotoxic induced nausea and vomiting. Ondansetron does not alter plasma prolactin concentrations. The role of ondansetron in opiate-induced emesis is not yet established.

5.2 Pharmacokinetic properties
Following oral administration of ondansetron, absorption is rapid with maximum peak plasma concentrations of about 30ng/ml being attained and achieved in approximately 1.5 hours after an 8 mg dose. The disposition of ondansetron following oral, intravenous and intramuscular dosing is similar with a terminal elimination half-life of approximately 3 hours and a steady-state volume of distribution of about 140L. Ondansetron is not highly protein bound (70-76\%) and is cleared from the systemic circulation predominantly by hepatic metabolism through multiple enzymatic pathways. Less than 5\% of the absorbed dose is excreted unchanged in the urine. The absence of the enzyme CYP2D6 (the debrisoquine polymorphism) has no effect on the pharmacokinetics of ondansetron. The pharmacokinetic properties of ondansetron are unchanged on repeat dosing.

Studies in healthy elderly volunteers have shown a slight but clinically insignificant, age-related increases in both oral bioavailability (65\%) and half-life (5h) of ondansetron. Gender differences were shown in the disposition of ondansetron, with females having a greater rate and extent of absorption following an oral dose and reduced systemic clearance and volume of distribution (adjusted for weight).

In a study of 21 paediatric patients aged between 3 and 12 years undergoing elective surgery with general anaesthesia, the absolute values for both the clearance and volume of distribution of ondansetron following a single intravenous dose of 2 mg (3-7 years old) or 4 mg (8-12 years old) were reduced. The magnitude of the change was age-related, with clearance falling from about 300 ml/min at 12 years of age to 100 ml/min at 3 years. Volume of distribution fell from about 75L at 12 years to 17L at 3 years. Use of weight-based dosing (0.1 mg/kg up to 4 mg maximum) compensates for these changes and is effective in normalising systemic exposure in paediatric patients.

In patients with renal impairment (creatinine clearance >15 ml/min), systemic clearance and volume of distribution are reduced, resulting in a slight, but clinically insignificant increase in elimination half-life (5.4h). A study in patients with severe renal impairment who required regular haemodialysis (studied between dialyses) showed ondansetron's pharmacokinetics to be essentially unchanged.
In patients with severe hepatic impairment, systemic clearance is markedly reduced with prolonged elimination half-lives (15-32h) and an oral bioavailability approaching 100% because of reduced pre-systemic metabolism.

5.3 Preclinical safety data
No additional data of relevance.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients
Mannitol
Basic butylated methacrylate copolymer (Eudragit E100)
Precipitated silica, hydrated
Strawberry flavour (maltodextrin, arabic gum, lactose, triethyl citrate)
Aspartame
Crospovidone
Magnesium stearate

6.2 Incompatibilities
Not applicable.

6.3 Shelf life
3 years

6.4 Special precautions for storage
Store in the original package.

6.5 Nature and contents of container
Aluminium – Aluminium / Paper (Peel) blisters containing 2, 4, 6, 9, 10 & 30 orodispersible tablets. Hospital packs of 10, 50, 10x6, 10x10 & 500 orodispersible tablets.

6.6 Special precautions for disposal
Do not attempt to push Ondansetron Orodispersible Tablets through the lidding foil.
Peel back the lidding foil of one blister and gently remove the tablet.
Place the tablet on top of the tongue, where it will disperse within seconds then swallow.

7 MARKETING AUTHORISATION HOLDER
Teva UK Ltd
Brampton Road, Hampden Park
Eastbourne, BN22 9AG
8 MARKETING AUTHORISATION NUMBER(S)
PL 00289/0686

9 DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
13/08/2007

10 DATE OF REVISION OF THE TEXT
13/08/2007
Labels and Leaflet

3 HOW TO TAKE ONDANSETRON

Your doctor has decided the dose which is suited to you. Always follow your doctor's instructions and those which are on the pharmacy label. If you do not understand these instructions, or you are in any doubt, ask your doctor or pharmacist.

These tablets are prepared to:
- Prevent nausea, vomiting and feeling sick.
- Treat nausea and vomiting.

The usual dosage instructions are given below:

For patients receiving chemotherapy and/or radiotherapy that causes nausea and vomiting:

Adults (including the elderly):
The recommended dose of 1 mg to 2 hours before chemotherapy or radiotherapy. Repeated by 8 mg to 12 hours later. After the first 24 hours following chemotherapy or radiotherapy, delays of up to 4 hours before the next dose are acceptable for patients experiencing delayed or prolonged nausea or vomiting.

The usual dose is 1 mg twice a day, which may be given for up to 5 days following chemotherapy.

To prevent nausea and vomiting after an operation:

Adults (including the elderly):
A dose of 1 mg can be taken 1 hour before the operation. Alternatively, a dose of 2 mg can be taken 1 hour before the operation. Followed by two further 1 mg doses at 8 hourly intervals.

1 ONDANSETRON: WHAT IT IS AND WHAT IT'S USED FOR

Each orodispersible tablet contains 4 mg or 8 mg of ondansetron. Ondansetron is used to prevent nausea and vomiting, for example, during chemotherapy or radiotherapy, delayed or delayed nausea or vomiting after surgery.

Some medical and surgical procedures can cause nausea, vomiting, feeling sick or being sick. Ondansetron can help relieve these symptoms.

2 BEFORE YOU TAKE ONDANSETRON

Do not take Ondansetron if you:
- Are allergic to any of the ingredients in the medicine.
- Talk to your doctor if you:
 - Ever suffered an allergic reaction to other similar medicines, e.g. grandiose or loperamide.

- Neuroleptic or anti-emetic agent, where the anti-emetic is used to treat patients whose symptoms persist, and where the anti-emetic is used to treat the patient's symptoms.
Children (aged 2 years and over): it is recommended that an intramuscular injection containing Ondansetron should be given.

Patients with liver problems:
The total daily dose should not exceed 8 mg.

Take the tablets as follows:
- Do not push the tablet out of the pouch, as this will:
 - Crack the tablet. Store tablets protected from moisture in a sealed blister pack. Tear off the tablet pouch along the dotted line (Figure 1).
 - Carefully peel off the blister foil, starting in the corner indicated by the arrow (Figures 2 and 3).
- Keep your hands dry and take the tablet out of the foil.
- The tablet can be placed on the tongue, where it will quickly dissolve. These tablets can be taken with or without water.

If you take more Ondansetron than you should:
If you or someone else swallow more tablets than should be taken, or if you think a child has accidentally swallowed any of the tablets, contact your nearest hospital casualty department or your doctor immediately. Ondansetron can cause temporary problems with your sight, severe constipation of the head, or rash.

If you forget to take Ondansetron:
If you forget to take a tablet, swallow as soon as you remember, unless it is nearly time to take the next one. Do not double doses together. Take the last missed dose at the next correct time.

Once you have started to take Ondansetron:
Ondansetron should start to work within 1 to 2 hours of taking the dose. Continue to take your tablet on the label, but do not take more than your doctor has recommended. If you continue to feel sick, you should tell your doctor.

4 POSSIBLE SIDE EFFECTS
Like all medicines, Ondansetron can cause side effects, although not everybody gets them.

- A severe allergic reaction (e.g., itching, swelling of the face, lips, mouth or throat which may cause difficulty swallowing or breathing).

This is a very serious but rare side effect. You may need urgent medical attention or hospitalisation.

The following side effects have been reported at the approximate frequency shown:
- Very common affecting more than one person in 10:
 - Headache
- Common affecting fewer than one person in 10 but more than one person in 100:
 - Runny or stuffy nose
 - Rash
 - Constipation
 - Uncommon affecting fewer than one person in 100 but more than one person in 1,000:
 - Pain
 - Abnormal sensitivity, abnormal psychiatric movements
 - Abnormal movements, up and down the eyes
 - Low blood pressure causing a light-headed feeling
 - chest pain, irregular heartbeat, slowing of the heart
 - Liver function tests may be affected by odcasional
 - Very rare affecting fewer than one person in 10,000:
 - Fever
 - Paroxysmal
 - Temporary visual disturbances, e.g., blurred vision.
 - Very rare, affecting fewer than one person in 10,000:
 - Temporary blindness, which usually resolves within 20 minutes.

If any of the side effects get serious, or if you notice any side effects not listed in this leaflet, please see your doctor or pharmacist.

5 STORING ONDANSETRON
Keep Ondansetron out of the reach and sight of children.

Do not transfer to another container. Store the original package in order to protect from light. Do not store Ondansetron after the expiry date shown on the outer packaging. Return all unused medicine to your pharmacist for disposal.

Last updated April 2007

UKPAR TEVA UK Ltd, Ondansetron 4mg and 8mg Orodispersible Tablets 29
Each tablet contains 4 mg of ondansetron base. Also includes lactose and aspirin (E151).

Dosage:
Use as directed by the physician.
Place tablet on the tongue, where it will melt within seconds, and then swallow.
Please read the enclosed leaflet.

Keep out of the reach and sight of children.
Store in the original package in order to protect from light.